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SPECIAL CYCLE ON SHTUKAS AND CATEGORICAL TRACE

ZEYU WANG

ABSTRACT. In this article, we relate the fake special cycle classes 2, attached to a Hecke eigensheaf L, €
Shvyilp (Bung) introduced in [LW25] to the isotypic part of special cycles on Shtukas. As an application, we
relate the self-intersection number of the isotypic part of special cycles arising from Rankin—Selberg period
to higher derivatives of Rankin—Selberg L-functions.
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2 ZEYU WANG

1. INTRODUCTION

In [YZ17][YZ19], a higher Gross—Zagier formula is proved, which for certain types of cuspidal automorphic
representations m of PGLy over the function field K(C) for some curve C' over F,, it relates the self-
intersection numbers of the m-isotypic part of the Heegner—Drinfeld cycles on the moduli of PGLs-Shtukas
with r-legs to the r-th derivative of the L-functions L(m,s) at the central point s = 1/2. This formula can
be regarded as a function field analog of the classical Gross—Zagier formula [GZ86] over the number field.

In [LW25], the authors proved a formula relating a certain norm of some “fake” special cycle classes
arising from Rankin—Selberg period to higher derivatives of Rankin—Selberg L-functions. More precisely, for
geometrically irreducible Weil local system o,,0,-1 on C of rank n,n — 1. Consider M = H 1(C’Fq, on ®
On-1)®H l(C’Fq, of ® o _), which is a vector space naturally equipped with a symmetric bilinear form wy;
arising from cup product. They defined some elements zprev ,. € (M®™)* arising from taking Hecke composed
with Frobenius trace of some Hecke operators on a geometric period integral, and proved a formula relating
w(nrery- (2rev ., 2 rev ) with the r-th derivative of the Rankin-Selberg L-function L(o, ® 0p—1 @ 0}, ®
ok _1,5) at the central value s = 1/2. See [LW25, Theorem 1.1] for the precise formulation.

The formula proved in [LW25] was not about the intersection number of special cycles. Therefore, it
cannot be regarded as a direct higher-dimensional analog of the higher Gross-Zagier formulas. Also, the
fake special cycles considered in loc.cit are not seemingly natural from their definition. However, it was
claimed in loc.cit that these seemingly artificially defined objects are indeed related to special cycle classes
on Shtukas. The main subject of this article is to establish this relation. As an application, we prove a
formula (Theorem 1.7) relating self-intersection numbers of o = 7,, ® 0,,_1-isotypic part of special cycles on
GL,, x GL,,_;-Shtukas with higher derivatives of the Rankin-Selberg L-function L(c, ® 0,,—1 B0} @0} _1, ).
This formula can be regarded as a direct generalization of the higher Gross—Zagier formula.

Two features in our formula are different from the higher Gross—Zagier formula in [YZ17]: The first differ-
ence is in the spectral decomposition of the cohomology of Shtukas. In [YZ17], the spectral decomposition
was made using the action of Hecke operators on the cohomology of Shtukas, in which the o-isotypic part
(actually, m-isotypic part for the automorphic representation 7 attached to o) was the isotypic part for the
associated Hecke character of 7. In this article, we directly construct a subspace of the cohomology of Shtukas
(rather than a complete spectral decomposition) and use it as our subspace of the o-isotypic part. However,
the geometric Langlands conjecture for GL,, should imply that our o-isotypic part is indeed the o-isotypic
part of the cohomology of Shtukas which can be defined using the (categorical) spectral action constructed
in [AGK"22¢] and the categorical trace interpretation of cohomology of Shtukas proved in [AGI22a].
Therefore, our definition of o-isotypic part should be completely canonical. The second difference lies in
the definition of the isotypic part of special cycle classes and the intersection number. One significant dif-
ficulty in generalizing the work of [YZ17] to higher-dimensional cases is that the special cycles are rarely
compact in general, which makes defining the intersection number a challenge. In [YZ17], the special cycles
are compact, and one can directly take their self-intersection number. However, the special cycles are not
compact in our case, and we have to define the intersection number in an ad-hoc way. What we do is the
following: Although the special cycles are not compact, one can still talk about their intersection numbers
with compactly supported cohomology classes. Therefore, we regard these special cycles as functionals on
the o-isotypic part of the (compact support) cohomology of Shtukas (which are finite-dimensional vector
spaces), on which the intersection pairing is non-degenerate. Therefore, we can define the “self-intersection
number” as the quadratic norm of these functionals under the dual of the intersection pairings. As far as we
know, the non-degeneracy of intersection pairings on the isotypic part, which plays an essential role in our
definition, was not previously known.

1.1. Main result: higher Rankin—Selberg integrals. In this section, we formulate our main result
on the intersection number of Rankin—Selberg cycles on Shtukas. Our main result is Theorem 1.7, which
confirms a version of Conjecture 1.6.

From §1.1.1 to §1.1.5, we introduce notations and backgrounds. In §1.1.6 and §1.1.7, we formulate the
main result.

Throughout the article, we fix a smooth projective geometrically connected curve C' over F,.

1.1.1. Moduli space of Shtukas. We first recall the definition of the moduli space of GL,-Shtukas.
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Fix a positive integer r € Z>¢. Consider I = {1,2,---,r}. Take {£1}{ C {£1}" to be the subset
consisting of sequences € = (e, -+ ,€,) such that >_._, ¢; = 0. For each € € {1}", we denote the moduli
space of (iterated) GL,-Shtukas with 7-legs and modification type Stds, by Shtgy, gae- It is is the moduli
stack such that for any IF,-scheme S, we have Shtqy, giqs (S) is the groupoid of tuples

((Ci)ie[,go @A 81 2y e_rc,_> 57«, Qo 50 = (ldC X FI“Obs>*5r)
where:
e c,ecC(S)fori=1,---,m;
e & is a vector bundle of rank n on C' x S for i =0,--- | r;
e &_1 % & is an isomorphism of vector bundles over C' x S\I'¢, (T'y, € C x S is the graph of the
map ¢; : S — C) such that
— If ¢, = 1, the inverse of the map induces an inclusion & C &;_1 such that &;_1/&; is supported
on I';, on which it is locally-free of rank 1;
— If ¢, = —1, the map induces an inclusion &_1 C &; such that &;/&;_ is supported on I'., on
which it is locally-free of rank 1;
o : & = (ide x Frobg)*E, is an isomorphism of vector bundles. Here Frobg : S — S is the relative
Frobenius map over F,.
The moduli space Shtgy, giqe turns out to be a Deligne-Mumford stack locally of finite type over Ccl. We
use I : Shtgr, spas — C! to denote the natural map sending above data to (c¢;);c;. The moduli space
Shtgy,, stas is non-empty if and only if € € {+1}7. We have dim Shtqy, giqe = 7.

When € € {£1}(, one has mo(Shtqy, g4qc) = Z where the isomorphism is given by taking the degree of &

as a vector bundle over C'. This gives a decomposition into connected components

d
Shtgr, stas = H Shtar,, stas - (1.1)
deZ
In our case, we are interested in the moduli space of GL,, x GL,,_1-Shtukas

ShtGL, x GL, _1,(Std, BStd,_1)e = Shtar, swas Xcor Shtar, _, sws_ > (1.2)
whose decomposition into connected components is
ShtGL, « GL, 1 (Std, @St e = ] SBEE TG | s msian e (1.3)
(dndn—1)€EZ?
in which
Shtgjﬂd;z}lﬁn,l,(smn X Std,—1)< = ShténLn,Std% Xc1 Sh (é:LLinl_l,Stdiil '

1.1.2. Rankin—Selberg cycles. The classical story of (everywhere unramified) Rankin—Selberg integrals (over
function fields) concerns the integration' of f € Fun.(Buncgr, x L, , (F,)) (the vector space of Q,-valued
functions with compact support) over the diagonal map 7(F,) : Buncr, ,(Fq) — Bungr, xcn,_, (Fy) in
which the map Bungr,, , — Bungr, is given by taking direct sum with the trivial line bundle. Or equiv-
alently speaking, one is interested in the function 7(F¢)ilpung, ,(r,) € Fun(Bunc, x cr, ,(Fy)) where
7(Fy)1 is summation along fibers.

Note that Bungr, (Fy) = Shtgy,, siac for r = 0. The principle of higher integrals is replacing the groupoid
Bung(F,) by the moduli stack Shtg ;. In particular, in the Rankin-Selberg case, instead of considering
the characteristic function (Fg)ilpung,, , (r,) € Fun(Bungr, x cr,_, (Fq)), one studies the Rankin-Selberg

cycle classes (or cohomological Rankin—Selberg cycles)
msne, 1 [Shtar, s || € Han1y-(ShtaL, x GL,_, (St BStd,_1)<) (1.4)
where
e [Shtqr, , stas ] € HQB('Q{I)T(ShtGLn—l’Stdi_l) is the fundamental class of Shtqy,, , sias | as a Borel-
Moore homology class;
® mshe,r  Shtqr, , stas | = ShtgL, x GL, 1, (Std, Bstd,_)e 1S the diagonal map which is taking direct
sum with the trivial vector bundle on the first factor. The map 7gp s is finite schematic by [Yun22].

Since we are over function fields, integration here means summation.
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o msne,r + Hy\ 'y, (Shtar, , sas ) = Hyly 1), (ShtGrL, x GrL, 1, (Std, ®std, ,)<) is the push-forward

of Borel-Moore homology class along proper maps.
Here, we consider Borel-Moore homology with Q,-coefficient for stacks over ?q. For stacks defined over F,,
if not otherwise specified, we always consider the Borel-Moore homology (or cohomology) of its base change

to Fy. In this introduction, we drop all the Tate twist.

1.1.3. Spectral decomposition of cohomology of Shtukas. In this article, by cohomology, we by default mean
cohomology with compact support in Q-coefficient of stacks over F,. The cohomology of Shtukas admits a
direct sum decomposition into isotypic parts for Langlands parameters.

To apply the machinery of geometric Langlands in positive characteristic, we need to pose the following
assumption on the characteristic of the base field:

Assumption 1.1 (Assumption on characteristic). Throughout the article, we keep the same assumption on
the characteristic of the base field as in [GR25, §0.1.9].

For each split reductive group G, we use G to denote the Langlands dual group. In [AGKT22¢, §24.1],
the authors define a quasi-compact algebraic stack Loc‘érith over Q, (denoted LocSys‘githm(X ) for X = C
in loc.cit) which is the moduli space of G-(Weil) local systems over C. This moduli stack has also been
considered in [Zhu21].

The ring of global sections F(Locgith, OLOCgith) is called the algebra of excursion operators. An equivalent
form of it was first considered by [GL18]. This algebra naturally acts on the cohomology of G-Shtukas. In
this formulation, the existence of this action is a consequence of [AGK " 22a, Main Theorem 0.3.10].

In our case, we get an action of I‘(Locg}j‘, OLocaritn) on I'.(Shtgr, ., Q) for each e € {£1}". It gives rise
to a direct sum decomposition

FC(ShtGLn@@) = @ FC(ShtGLn,Q@)S (1.5)
SEWO(LOCE"{T)
where Fc(ShtGLn@@)s is supported on the connected component of Loc?fiLti1 indexed by s.

arith
Lo Goom
component. We use I'.(Shtgr, ¢, Qp)1ocaritn to denote the corresponding term in the spectral decomposition
=== G,on
(1.5).
The action above extends to an action of H*(Locgﬁi‘, OLOCaGnLt;.) on [[ez Hj(Shthng,@). We use

([T H:(Shtdr, e Q0))o, € [ He(ShtEr, o Qr) (1.6)

deZ d€eZ

arith

For a Weil local system o, € Locgy, (Qy), we use Loc C Loc‘gmrl to denote its underlying connected

to denote the maximal sub-module (scheme theoretically) supported on o,, € Spec H O(Locg}f:, OLocgﬁj;)-

For an irreducible Weil local system o, this sub-module turns out to be a perfect complex, and it is what
we mean by the o,-isotypic part of the cohomology of Shtukas. Note that we are taking a direct product
instead of a direct sum here to avoid getting an empty sub-module.

We use 7, to denote the base change of o, to I, which we call the underlying geometric local system of
on. We say that o, is geometrically irreducible if &, is irreducible. If ¢, is geometrically irreducible, the
underlying connected component Locgff:gn is isomorphic to [G,,/G,,] in which G,, acts trivially. Here, the
first G,, can be regarded as the moduli of different Weil sheaf structures on the underlying geometric local
system @,. The second G,, is the moduli of automorphisms of ¢,,. In this case, the isotypic part defined
above admits the following conjectural description:

Conjecture 1.2. For each € € {£1}{, there is a canonical isomorphism
Fc(ShtGng @)Locgﬁ:)an [(n - 1)7“] = F(CI’ U%) ® O(Locg(t}rlii{l,an)
where o5, = R;cr0%. In particular, it gives a canonical isomorphism

(JT 2o+ D7 (ShtE, o Q))o, = HY(CT, 0%). (1.7)
deZ
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Remark 1.3. Conjecture 1.2 is a consequence of the geometric Langlands conjecture with restricted variation
for GL,, in characteristic p formulated in [AGKT22¢]. In particular, it is a consequence of [GR25].

Remark 1.4. While the isomorphism in Conjecture 1.2 is claimed to be canonical, there are several different
canonical choices indeed. Choice of such an isomorphism can be roughly thought of as a Shtuka analog of
the choice of a Hecke eigenform: one can choose it to be Whittaker normalized, L2-normalized... Whenever
using such an isomorphism, one should specify which isomorphism is being used.

For GL,, x GL,,_1-Shtukas, one can similarly define the action by excursion operators

) = .Iq"k (L ac‘;IlJth7 OLOCarlth) ® H* (L Carlth 19 OLOCarith )

* arith .
H*(LocGr, « gL,y OLocaGrﬁ:L‘ X GL,_; GL,_1

on

(dn,dn-1) e}
H (ShtGL X GL,, _ 1,(Stdn IXStdn,l)i’ @).
(dnvdn—l)ezz

One can define the o = (0,,,0,-1) € Loc%rffx aL,_, (Qg)-isotypic part
* dn,dn o)
« JI H: (Sht(GL 9 Glgn (Std, BStd,,_)er Q) C II  HiShter, xGL, . (std, Rstd,_1)er Qo)-
(dn,dn—1)€Z? (dn,dn—1)€EZ?
(1.8)

1.1.4. Intersection pairing. The cohomology of G-Shtukas carries an intersection pairing. When G = GL,,
we have the intersection pairing

(= )¢ HY"(Shtgy,, o, Qo) © HY" (Shtly,, Qo) = H"" (Shtdy,, . Q) = Ty (1.9)

induced by cup product and taking the degree of 0-cycles. The following concerns the behavior of the
intersection pairing on the o,-isotypic part (1.6):

Conjecture 1.5. For each d € Z, € € {£1}}, and irreducible Weil local system o, € Loc‘"‘th((@@) the

restriction of the intersection pairing (—, —>§ defines a non-degenerate bilinear form
(=, (T] HE (S0t 0 Qo))o, @ ([ B (Shter, 0 Ty — T? (1.10)
e€Z e€l
Given Conjecture 1.5, we can use the bilinear form (—, —>g0n to make an identification
(TT H7(Shtgr, o @0))ss = (IT He" (Shte, o Qo))
e€Z e€Z

This gives a non-degenerate bilinear form

<_’ ean HHTLT ShtGL" 67(@@ on HHTLT’ ShtGLn G’Qf)) Q@' (111)

ecZ ecZ

For GL,, x GL,_1-Shtukas and an irreducible Weil local system o = (0,,0,-1) € Locgﬁ?x aL, (@),

consider o* = (0}, 0%_1). One can similarly define a bilinear form

dp,dp—1),% . 2(n—1)r (enyen ) oy *
<_7 _>éo' v . ( H H ( ) (ShtGL X éLn 1,(Stdn®Stdn,1)£’@))U®
(ensen—1)€Z?

(1.12)

2(n—1)r €nyen—1) *
( H H (ShtGL X GL,,_ 1,(Stdn®smn_1)s’@))a* - Q

(en,en—1)€Z?

In this setting, we also expect Conjecture 1.5.

2Here we are studying the intersection pairing on Sht‘iGLn . which is concentrated in a single degree d on the o,-isotypic

part which spreads into all degrees (accounts for e € Z).
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1.1.5. L-function of local system. For a Weil local system o on C, its L-function is defined by

2
L(o,s) = det(1 — ¢—* Frob,I'(C,0)) ! = Hdet(l — ¢~* Frob, HY(C, o))V

o (1.13)
i=0
The root number is defined by
2
1 . i—1
(o) = det(Frob, I'(C, 0)(5))_1 = l_Idet(q_l/2 Frob, H(C,0))=V"". (1.14)
i=0

1.1.6. Statement of the main conjecture. Before stating our main result, we will first formulate a conjecture,
which will be confirmed by our main result under some assumptions that are satisfied in the most interesting
cases.

Borel-Moore homology can be naturally regarded as the dual of cohomology with compact support. In
our case, we have an isomorphism

Hyow 1) (ShtGL,, x GL, 4 ,(Std, BStd,_ 1)) = HX" D" (Shtar,, x QL (Std, 8 Std, 1) Qp)*-

Therefore, one can view the special cycle classes (1.4) as functionals on the cohomology with compact support
and study its restriction on the o-isotypic part (1.8). This gives
(

(WSht,I,![ShthLn,l,Stdi_l])o € ( H H? n_l)T(Shtgf;elféin,l,(smnxsmn,l)sv@)); (1.15)
(en,en—1)EZ2

We have the following conjecture:

Conjecture 1.6. Assume o,,0,_1 are irreducible Weil local systems on C' with rank n,n — 1. Take o =
(On,0n—1) € LocgffoLnfl(Qg). Then (WShtJJ[Shtfcl;Ln,l,Stdﬁ_l])a is mon-zero for finitely many h € Z.

Take

h
(msne.r1[Shtar, | sas Do = D (wsne,z,1[Shter, , seas 1o
heZ

- enee _ (1.16)
e( I HXIM OGS, s, msia, e Q)5
(en,en—1)€Z?
For any (dy,d,—1) € Z*, we have
Z <(7TSht7I7![ShtGLnfl,Stdi_l])oa(ﬂ-Sht,I,I[ShtGL7L71’Stdi_l])o.*>gl‘;“d"*1)’*
ee{=£1}§
r ~ . 1.17
. (45) (o0 ®0n 1 B or @0 1,5 (1.17)
_ (IdlrrlB\Jnc;L‘7171 (11’1 q)_7-_2 s=1/2

Res,—1 Z(O’n ® o}, s) Ress—1 Z(on,l ®0ok_4,8)

Here dimBungy,, , = (n — 1)%(g — 1) where g is the genus of the curve C. The normalized L-functions are
defined as

L(op ®0p 1 @0l @0} _4,8) =g DDA (6 @0, @0l @0 _,5) (1.18)
L(c, @ 0,s) = q"z(g_l)SL(an ®o),s) (1.19)
L(ona®0r 1,8)=¢m V0 DsLo 2ok, s). (1.20)

1.1.7. Statement of the main result. Our main result confirms a slightly different formulation of Conjecture
1.6 when o,,0,_1 are geometrically irreducible.
In this case, instead of working with the subspace

2(n—1 (€n7€n7 ) ra\
( H Hc(n )T(ShtGL" X éLn,h(Stdn X Stdn,l)s’@))a
(en,en—1)€EZ?
C (1.21)

2(n—1 (enaen— ) ey
H Hc(n )T(ShtGLn X (;Ln,l,(Stdn X Std,—1)<? @)
(en,en—1)EZ?
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defined via the spectral action, we directly construct an injection

H'¢ o H'(C (on®on 1)) =  [] H§<nfl>r(Shtggfg—éin_h(smnmtd”_l)y@). (1.22)

(en,€n71)622

The image of H*¢, . should coincide with the subspace (1.21): While we will not show this in this article,
we believe it is an easy consequence of the geometric Langlands conjecture for GL,,, in particular, the result
of [GR25]. Therefore, the map H*, . should give a choice of the isomorphism (1.7). The construction of
this map will be given in §6.1.

Throughout the article after this point, we will always use (1.22) as our o-isotypic part. The meaning
of (1.15) and (1.12) will also be adapted to the isotypic part (1.22). We can formulate our main theorem,
which will be proved in §6.4:

Theorem 1.7. After replacing the subspace (1.21) by (1.22) and assuming

e 0,,0,_1 are geometrically irreducible,
® p>n,

the Conjecture 1.5 and Conjecture 1.6 hold.

Remark 1.8. The first assumption is used for simplicity in constructing a Hecke eigensheaf. The second
assumption comes from Assumption 1.1.

1.2. Idea of proof of the main result. In this section, we explain the idea of proof of Theorem 1.7.

From now on, we take k = Q,. We work with a split reductive group G. To prove Theorem 1.7, we compute
explicitly all the terms on the left-hand side of (1.17) so that we can explicitly compare both sides. This
includes writing down explicitly the isotypic part of Rankin-Selberg cycle classes (g, IJ[Sht}éLn_l,Stdi Do

1
as well as the isotypic part of the intersection pairing (—, —) g{;’d"—l)**. These two elements can be uniformly

understood by taking categorical trace of the corresponding geometric relative Langlands statements in
[BZSV24].

1.2.1. Categorical trace. We first briefly explain the formalism of categorical trace. We refer to §2.1 for a
more precise explanation. For a dualizable presentable (0o, 1)-category C with an endomorphism F' € End(C),
its categorical trace is a space tr(F,C). Therefore, to understand a space S, one can try to find a pair (C, F')
such that S 2 tr(F,C). This allows one to study the richer category C instead of the space S.

In our case, we would like to understand a morphism between spaces z : S; — Ss. This can be achieved
by the formalism of the functoriality of the categorical trace. Suppose we can write S; = tr(F;,C1) and
So = tr(Fy,Cs). For each continuous (i.e. colimit preserving) functor L : C; — C3 admitting a continuous
right adjoint, given a natural transformation n : L o F; — F5 o L, there is an induced morphism between
spaces tr(n) : tr(F1,C1) — tr(Fa,Cz2). Therefore, one could look for a natural transformation n such that
tr(n) = z, which changes the study of a map between spaces to the study of a natural transformation.

The discussion above also makes sense when working with categories linear over a symmetric monoidal
category A. In that case, one replaces the word “spaces” by “objects in A” and “functors” by “A-linear
functors”. We use tr4(C) € A to denote the (A-linear) categorical trace. See Example 2.4 for a more precise
treatment.

1.2.2. Fundamental diagram. In this section, we pretend that G is semisimple, which is unfortunately not
the case since we care about the case G = GL,,. However, this would simplify the situation and is enough
for explaining the idea.

In our setting, we would like to understand the sequence of morphisms

I, Eo,1 B [Z‘)/(I]
VU< d]> — l[’!(ICVI ‘Shtc,1< d1>) _— ECI. (1.23)

Here,

e [ is a finite set, V! € Rep(G'), o € Loc*gith(k) is a Langlands parameter, V! is the local system on
C! involved in the Tannakian definition of o, (n) = II(%)[n] is the shearing. Here II means changing

the parity, which can be safely ignored at this point. d; € Z;
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e Shtg 7 is the moduli of G-Shtukas with I-legs without bounding the poles. ICy 1 |sht. ; € Shv(Shta 1)
is the sheaf attached by the geometric Satake equivalence. I; : Shtg ; — C! is the map remembering
only the legs. When G = GL,,, V! = Std$, o = 0,,, df = r, we have I'o(I;1(ICy1 |shee , (—dr))) =
I'.(Shtar, e, @)((n —2)r).

e kco is the constant sheaf on CY;

o &y o VI = 11 (ICy: |shte.;) is the o-isotypic part map. In GL,-case as above, ignoring the
difference between direct sum and direct product, we have H*¢,; = H*&,, . @ H*(C! o%) —
H U (Shtgr, o, @) ((n — 1)r/2) which is the GL,-version of the map (1.22).

e [Z] is a special cycle class attached to an affine smooth G-variety X. In this article, we are
particularly interested in two cases:

— Rankin-Selberg case: G = GL,, x GL,,_1, X = GL,,_; \ GL,, x GL,,_1, V! = (Std,, ®Std,,_1)¢,
and

1]'
— Group case: G = GL, x GL,,, X = GL,, \ GL,, x GL,,, V! = (Std,, ® Std,, )¢, and

[Z1] = Asne,1[Shtar, sas] = (= —)e-

Here, Agne s : Shtgy,, gtas — ShtaL, x GL,..(Std, ®Std, )< 15 the diagonal map.

[Z1] = msne,1,1[Shtar, |, seas

Following the principle in §1.2.1, we switch to understanding a sequence of functors between categories
with endomorphisms. We consider the following fundamental diagram:

QLisse(C’I = )®lghVN11p Bunc) ® QLisse( C’I)fﬂf QLisse(CT)

(1)
7®V"I<7dl>l %rob xid) voT VI(— d/ lid . (124)

QLisse(C!)_——» Shv, BunG) ® QLisse(CT) T QLisse(CT)

®]L )® X,Nilp, I

This diagram contains a wealth of information. Let us explain it step by step. We first explain the
categories in (1.24):
e QLisse(CY) is the category of sheaves with lissé cohomologies on C! defined in [AGI " 22¢, Defini-
tion 1.2.6];
o Shvip(Bung) is the category of sheaves on Bung with nilpotent singular support. This is the main
player in the geometric Langlands with restricted variation [AGK™22¢].

We then explain the functors between categories, which are horizontal maps in (1.24):
o L, € Shvnip(Bung) is a choice of Hecke eigensheaf with eigenvalue o € Locs (k). When G = GL,

and o = o, is geometrically irreducible, such an eigensheaf is constructed in [FGV02].
o [y Nilp.T = I'.(—®Px)®id where Py € Shv(Bung) is the period sheaf attached to the affine smooth

G-variety X as before. See [BZSV24, §10.3]. We are particularly interested in two cases:
— G =GL, xGL,_1, X = GL, 1 \GL,, x GLy,_1, Px = mMkpune, _, Where

m: Bungr, , = Bungr, xcL,_; -
— G =GL, xGLy, X = GL, \ GL, x GLy,, Px = Aikp,,, Wwhere
A BunGLn — BUHGLn x GLyp, +

Now we come to the endomorphisms of categories which are vertical maps in (1.24):
e Ty : Shvnip(Bung) ® QLisse(CT) — Shvyiy, (Bung) ® QLisse(C?) is the Hecke operator attached
to VI € Rep(G').
e Frob : Bung — Bung is the (relative) Frobenius defined over F,.
Finally, we explain the natural transformations in (1.24):
e The natural transformation 77((,1) comes from the Frobenius equivariant structure and Hecke eigen-
property of L.
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1)
¢, Nilp
sheaf Px. The procedure of attaching such a natural transformation to a cohomological correspon-

dence will be explained in §2.2.6.

e The natural transformation 7 comes from a cohomological correspondence c‘}f ; on the period

Pretending that the horizontal maps preserve compact objects, by the functoriality of categorical trace
applied to (1.24), we get the upper row in the diagram:

(1)
tr ING .
ooy (57) Quisse(c) (X )

t ;
trquissecry(— @ VY (—dr), QLisse(CTy} 2y {rQLisse(cr) (Frob xid)y o Tyr(_g,), Shvip (Bung) ® QLisse(CT)) ——"{rquisse(or) (id, QLisse(CT))

lN NlLTScn’c [ZXI ] l/\a

&,
V) (=dr) : U 1(ICv+ |snea,, (—dr)) = ke

(1.25)
Note that the lower row of the diagram (1.25) is (1.23).
We first explain the vertical isomorphisms in (1.25):

e The left and right vertical isomorphisms follow from the most obvious computation of categorical
trace.

e The middle map LT is defined in [AGKT22a, §5.4]. The fact that it is an isomorphism is the
main subject of [AGK ™ 22a]. See §4.2 for a discussion.

We now explain the commutativity of the diagram (1.25):

e The commutativity of the left square defines the o-isotypic part map &7 : V) — 11 1(ICy+ |snee,)-
e The commutativity of the right square will be illustrated in §1.3. In this article, we prove it under
Assumption 2.36.

Remark 1.9. In the discussion above, we pretend that the horizontal functors in (1.24) preserve compact
objects. While this is usually satisfied when G is semisimple and ¢ is irreducible, it mostly fails for non-
semisimple split reductive groups, which unfortunately includes the case G = GL,,. In §5.3, we will discuss
a replacement of (1.24) for general split reductive groups.

1.2.3. Fake special cycle classes. Now we only need to understand the outer square of (1.25). For this, we
(1) (1

X Nilp © Tl ) for the outer square of (1.24), and we need
vi’

need to understand the natural transformation n

)

Mex Nilp © nc(,l)). This is the study of fake special cycle classes,
vi’

to understand how to compute trqrisse(c)(

which is the main subject of [LW25].
From the cohomological correspondence cff,, one obtains a map

g, Vi) [

Ly — kot ®/ L,. (1.26)
X,Nilp

X,Nilp

Under the assumption that horizontal maps in (1.24) preserve compact objects, the complex [ X Nilp L, is a
perfect complex. Therefore, one arrives at the fake special cycle class

VI{—di) ®/ L, ® (/ L,)*
X,Nilp X,Nilp

id®Frob ®id VI(—d) ®/ L, (/ L,)*
X, Nilp X, Nilp

id®coev1<x Nilp Lo

Zcépa : VG‘I<_dI>

(1.27)
acXI,o®id
V—>@Cz®/ ]LC,®(/ L,)*

X,Nilp X,Nilp

id®eva,Nilp Lo
ker

. These elements have been studied in [LW25, §1.1.5]. It turns

out that the composition of the top horizontal map in (1.25) coincides with z.x .
X

See (5.3) for an equivalent definition of z.x
o
We are particularly interested in the following cases:

e When G = GL,, x GL,—1, X = GL,,_1\ GL,, x GL,,_;. The fake special cycle classes (1.27) are
understood via Theorem 6.5.
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e When G = GL, xGL,,, X = GL, \ GL,, x GL,,. The fake special cycle classes are described in
Theorem 6.12.

During the proof of results above, we heavily use the automorphic commutator relation developed in
[LW25, §4]. See §5.1.3 for a brief recollection.

1.3. Main tool: Categorical trace interpretation of special cycle classes. In this section, we explain
in more detail the right commutative square of (1.25). It turns out we can make sense of it and prove it in
two cases:

e Homogeneous minuscule case: G is split reductive, X = H\G for some spherical split reductive sub-
group H C G, V! € Rep(G') is irreducible minuscule, [Z;X,] = mgpg,7,1[Sht m,v;] for some irreducible
minuscule representation V/, € Rep(H ). This includes all the cases we need in the proof of Theorem
1.7 and will be introduced in §1.3.1.

e Diagonal case: H is split reductive, G = H x H, X = H\H x H, VI = V} ®V} € Rep(G') for
some irreducible representation Vj € Rep(H ). This case will be introduced in §1.3.2. This case in
general will not be used in the proof of Theorem 1.7, but we will use it to prove the non-degeneracy
of intersection pairing for GL,, with arbitrary coweight in Corollary 6.13, which has its own interest.

1.3.1. Minuscule homogeneous special cycle classes. Consider a split connected reductive group G and a
spherical split connected reductive subgroup H. Take X = H\G. We choose maximal tori 7' C G and
Ty C H such that Ty € T. We use X.(T), X.(Ty) to denote the coweight lattices.

For the finite set I = {1,2---,r} and a sequence of minuscule coweights Ay = (Mg, -, Aur) €
X.(Tw)!, we obtain a sequence of coweights A\ = (A1, ,A\.) € X,(T)! such that \; in the image of A\ ;
under the natural map X, (Tx) C X.(T). Let V), € Rep(G') be the irreducible representation with highest
weight A;. We use Shtg x, C Shtg ; to denote the closed Schubert cell of type A;.

We define the minuscule homogeneous special cycle class

23] = msuera[Shtr o, /O] € HEGL Lo, (Sht,r /CT,ICY [sui )
in which
HEJ 4oy, , (Shtas, /CTICy s s ) = Hom® (1) (ICy |sug ) (—dx, + 2dx, ). kor).

Here,

Tsnt,r @ Shtax, , — Shtg,y, is finite and schematic by [Yun22].”

[Shtya,, /CT] € HQBdJ;/IHJ (Shtg ., /CT) = Hﬁc]ivimw)(smHJ\H,r) is the (relative) fundamental

class.
Ir : Shtg x, — C! is the map remembering only the legs.

d)\H,I = E::1<2/)H7 /\H,i> = dim(ShtHJ\H,I) - dim(cl)v d>\1 = Zi<2pG7 /\1>
We now explain the right square in (1.24). We first explain the Hecke operator Tyr. Consider the
correspondence

N
Bung xC?! <L Hke 1 SLETN Bung xC! .

For V! € Rep(GT)?, via the geometric Satake equivalence, one obtains a (super) sheaf ICy:1 € Shv(Hkg 1)
normalized such that it is perverse on each fiber of Hkg,; — C! with parity same as Y, ;(2pc, A;). This
gives the Hecke operator

<_
h

Tyi = B ru(RY(=) @ 1Cy0) 2 T 13(h i(=) ® ICy+) : Shv(Bung xC1) — Shy(Bung xC1)

which preserves the full-subcategory Shvyi,(Bung) ® QLisse(C?) C Shv(Bung xCT).
We now turn to the definition of the natural transformation 77(}() = 77(1) Nilp, Via cohomological
CVI,Nllp g, NP

correspondence. We leave it to §2.2 for notations and operations involving cohomological correspondences.

3In some part of this article, we write Shtg », = ShtG,VA, .
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Consider the diagram

— —
h o1 hom,1
BunH XCI — HkH,)\HI —_— BunH XCI

ima lﬂHk’I imd : (1.28)
— —

h h
Bung xCT «+X— Hk — 2L Bung xC!
G G, G

(_
We have the relative fundamental class of h g : Hkgx,, — Bung xC! which can be regarded as a
cohomological correspondence
[HkH,AH,I /BunH XCI] € COITHkH,AHJ7E<2d)\HJ>(EBHI]H xCIvEBunH XCI)

= Hz%ﬁij (Hkgx,,, / Bung xC')
e —
= HOmO( h H,IEBunH < C1 <2d)\H,1>7 h !H,IEBunH XCI)

We apply the push-forward of cohomological correspondence in §2.2.2. Since that the right square of (1.28)
is pushable, given (7 x id)ikp,,, xcr = Px M kcr, one can define the minuscule homogeneous cohomological
correspondence

Crpgp = WHk,I,![HkH,/\H,I /BunH XCJ] S COH‘HkG,AI,E(QdAH,ﬂ(,PX @ECI,'PX &ECI)
— —
— Hom® (7 }(Px B kei)(2dx,,,)), Ty (Px B ki)
= HOmO(TC*VAI (—dx, + Qd)\H11>(,PX Rkeor),Px Rker)
where ¢* is the pull-back along the Cartan involution ¢ : G! — GY.
Composing with the natural isomorphism Frob* Px = Px, one gets a cohomological correspondence

(_
o) € Hom®(7'; (Frob xid)*(Px M ko) (2da,, ), By (Px Mker))

=~ Hom"(Tp-v,, (—da, + 2dx, ;) © (Frob xid)*(Px W ker), Px Kker)

7
. (1.29)

By projection formula, we have natural isomorphisms

l[’!(Tvl(—) & _) = ll,!(_ ® Tc*VI(_))
and
l1,(Frob* (=) ® —) = I;,(— ® Frob(-))

where {7 : Bung xC! — CT. Since G =1lr1(—® (Px Xkar)), the cohomological correspondence (v
X,Nilp,I ) C AH,T
gives us a natural transformation

1 i / o(Frob xid)r o T, (~dx, + 2dx,,,) — .
HI X, Nilp, I X, Nilp, I

The main result in this part is the following:

Theorem 1.10. Assuming Assumption 2.506, the right square of (1.25) is commutative for homogeneous
minuscule special cycle classes. That is, we have a commutative square

(1)
trQLisse(cT) (n‘*H s Nilp)

trQLisse(Cr)((Frob xid); o TVA, (—=dx; +2dy, ), Shvyip (Bung) ® QLisse(CT)) —— t’rQLisse(Cz)(id, QLisse(CT))

i )
Tshe, 1,1 [Sht,x gy 5 /C7]

lly!(ICVI |Shtc,1)<_d>\1 + 2d>\H,I> EC’

(1.30)
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1.3.2. Diagonal cycle classes. When G = Hx H and H C G is the diagonal embedding. Take X = H\H x H.
In this section, we consider special cycle classes for possibly non-minuscule modification types. Note that the

. . 1 .
construction of the natural transformation 7753 Nilp from the cohomological correspondence ¢, , makes
H,I’ ’

sense without assuming that Ay is minuscule. Only when defining ¢y, , and [Z;),], the steps involving
fundamental classes need a clarification.
The diagram (1.28) becomes

— —
h a1 h
Buny xC! =~ Hkg ry, — Bung xCT
leid lAHkJ Pxid (1.31)
— —
I hr hr I
BUHG xCt +——— HkG,)\I e BunG xC

where A : Buny — Bung is the diagonal map.
In this case, we consider relative fundamental class

[ShtH)\H,I /CI] € HOBM(ShtH,)\H,I /CI? IC%EHI ‘ShtH,)\HyI) = HomO(IC%Q ‘ShtH,)\HyI7wShtH‘AHJ /CI)

H,IT

given by the canonical map
®2
ICV, | Ishtirn, , =10, Ishtnn, , @ Por(ICv, | Ishtuay, ) = Wshty ., , /o1

Here we are using Dor := Hom(—, wspy, , -, /o) : Shv(Shty,a, ;) = Shv(Sht,a, ;) to denote the (relative)
Verdier duality over CT and wgy sy, /C1 tO denote the (relative) dualizing sheaf. A similar construction
gives the relative fundamental class

Mk, /Bung xC'] € HY (Hkp,,,, /Bung xCTICT? ).

We call ¢, , = Ani,1,1[Hkg,\, , /Bung xC1] the diagonal cohomological correspondence.
In this case, the element

(= =amr = Dsne,r [Shterag, /O] (U (ICv; | Ishtas,, ) = ke (1.32)

is called the diagonal cycle class and has a significant meaning: It is the intersection pairing on the compact
support cohomology of Shtukas. The functor

ev = / : ShVNﬂp(BuIlg)®2 — Vect
X,Nilp
also has a significant meaning: It is the counit for the miraculous duality of Shvyi,(Bung).
We have the following parallel result of Theorem 1.10:

Theorem 1.11. The right square of (1.25) is commutative for diagonal special cycle classes. That is, we
have a commutative square

(1)
$TQLisse(c]) (T]c/\H ! ,Nup)

trqrisse(c) (Frob xid); o Tyr, Shvi, (Bung) ® QLisse(CT)) —— trQLisse(cr) (id, QLisse(CT))
NJ/LTSerTe J/N (1.33)

(==
(Ui,11(ICv; , , Ishts,n, , ))®? il

ker

1.3.3. Strategy of proof. The proof of Theorem 1.10 and Theorem 1.11 will be given in §4.5. One may think
Theorem 1.10 and Theorem 1.11 are purely formal consequences of the six-functor formalism given the deep
result of [AGK"22a]. While we do not regard them as deep results themselves, there are some seemingly
necessary and non-trivial ingredients involved in the proof.

We only explain the proof of Theorem 1.10 since the proof of Theorem 1.11 is similar after the development
of the theory of cohomological correspondences with kernels, which is the main subject of §2.2.

We prove Theorem 1.10 by establishing a two-step equality

1
thLisse(CU(??EALJ witp) = trsne,o1 (€, ) = Tonera[Sht s, , /CT].
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Here, the element trgp cr(er, ) € H]—BIKIHdAHJ (Shte,x, /CT,ICy 1 |shte ) is the geometric trace of the

. 1 . . . )
cohomological correspondence cg\b){ ,- The notion of geometric trace of cohomological correspondence ! has

been widely used in literature. An incomplete list of its usage includes [FYZ23][YZ17][Var07][GV24]. It can
be regarded as a generalization of the sheaf-function correspondence, in which case the correspondence is
taken to be the Frobenius morphism.

The first equality follows from a direct diagram chasing and is completely formal given [AGK™22a]. Its
proof will be provided in §4.

The second equality is more subtle: It involves compatibility between the push-forward of cohomological
correspondence and the geometric trace construction. Its proof will be given in §3. Note that such com-
patibility is proved in [Var07][LZ22] for push-forward along proper maps. The problem here is that while
the map mgne 7 : Shtgx, , — Shtg,x, is proper, the map 7 : Bungy — Bung (or more essentially the map
Tk, P Hkg Ay, — HkG;)\I) is not proper. We remedy this by showing that the map 7 : Bung — Bung
(hence the map may s : Hky x s — Hkg a ;) admits a compactification such that the Hecke-Frobenius corre-
spondence is contracting along the boundary. The idea of studying contracting correspondence in the theory
of cohomological correspondence is not new: It appears in [Var07] and is also used in [GV24][FK24]. In these
articles, they show that pull-back of cohomological correspondence along contracting substacks is compatible
with the trace construction. In contrast, we show that push-forward of cohomological correspondence along
a map admitting contracting boundary is compatible with trace construction, which seems to be new as far
as the author knows. This is Theorem 2.27. .

The “compactification” of m : Buny — Bung is a map 7 : Bun; — Bung coming from the affine
degeneration of the spherical variety X = H\G. See §2.3 for a discussion. This is where the sphericity
of H C G and Assumption 2.36 are used. In the diagonal case G = H x H, this compactification is the
famous Drinfeld’s compactification A : Bung — Bung x Bung coming from Vinberg’s semigroup. A proof
of that such construction gives a compactification (i.e., A is proper when G is semisimple) is contained
in [FKM20, Appendix A]. For a general homogeneous spherical variety X = H\G, the existence of such a
compactification seems well-known to the experts, but we cannot find appropriate literature. We prove this
by simplifying and generalizing the argument in loc.cit, which also yields a shorter proof in the diagonal
case. This is Proposition 2.40.

1.4. Organization of the article. The organization of this article is as follows:

e In §2, we introduce the preliminaries for this article. In particular, we develop the theory of coho-
mological correspondence with a kernel that appears ubiquitously in this work.

e In §3, we prove the identity between the special cycle classes and the geometric trace of the coho-
mological correspondences.

e In §4, we prove the identity between the geometric trace of cohomological correspondences and the
classes obtained from the functoriality of categorical trace.

e In §5, we define the o-isotypic part in the cohomology of Shtukas and develop general tools to study
the isotypic part of special cycle classes.

e In §6, we apply the machinery developed in the previous sections to the Rankin—Selberg case and
prove the main result, Theorem 1.7.

1.5. Notations and conventions. We now introduce the commonly used notations and conventions in
this article.

1.5.1. Category theory. In this article, by a vector space, we mean a super vector space. By a category, we
usually mean an (oo, 1)-category. We use Space to denote the oo-category of spaces and Vect to indicate
the oo-category of (super) vector spaces. For a category C with a t-structure, we use C¥ to denote its heart,
which is an abelian category.
For V € Vect, we define V(1) = IIV[1](1/2) where

e II: Vect — Vect is the functor changing the parity;

e [1] : Vect — Vect is the shift functor;

e (1/2) is the Tate twist whenever it makes sense (e.g, when working with Frobenius equivariant vector

spaces).

41n literature, it is also called sheaf-cycle correspondence.
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For a category C and two objects z,y € C, we use Hom(z, y) € Space to denote the mapping space. We
define Hom®(z, ) = mo(Hom(x, y)) € Vect.
We say a functor between two categories L : C — D is continuous if L preserves colimits.

1.5.2. Sheaf theory. In this article, we work with algebraic stacks, which are Artin stacks locally of finite
type over a field F. For a algebraic stack X over F', we use Shv(X) = Shv(X%) to denote the category of
(ind-constructible) étale sheaves with k = Q,-coefficient as introduced in [AGIK22c, Appendix F]. We use
Shv(X). C Shv(X) to denote the full subcategory of constructible sheaves.

1.5.3. Geometric notations. In this article, by a G-variety X, we mean a variety X with a right G-action.
We fix a smooth projective curve C over F,. We use Bung = Map(C, [*/G]) to denote the moduli space

of G-bundles over C. For a smooth affine G-variety X, we define Bung := Map(C, [X/G]). Tt is equipped

with a map  : Bung — Bung which is of finite type. We define the period sheaf to be Px := W!EBuné{.

Weuse I ={1,2,---,r} to denote a finite set that serves as the index set of legs. We use Hkg, 1 to denote
the (iterated) Hecke stack of G with I-legs, that is, the moduli space of tuples

((ci)iers €0 S & -0 BE)
where
e c,eCfioriel;
e &_1 % & is a map between G-bundles on C — {c;} fori e I.

It gives a correspondence
13 7
Bung xCT +*L Hke s L1 Bung xCOF

where %1 sends data above to (&, (¢;)ier) and 71 sends data above to (€, (¢;)ier). We use Iy : Hkg ; — C!
to denote the map remembering the legs (sending data above to (¢;)ier)-

The geometric Satake equivalence attaches each V! € Rep(G') a sheaf ICy: € Shv(HkS), which is nor-
malized such that when V! = V), € Rep(G!)" which is irreducible with highest weight \; = (A,--- ,\,) €
X, (T)*, the sheaf ICy 1 is perverse, pure of weight 0, and has the same parity as > icr{2p, Ai). We use Hkg z,
(or Hkg v, ) to denote the support of ICy: (known as the closed Schubert cell). We use Hk¢, \, C Hkg ,
to denote the open Schubert cell.

The Hecke operator attached to V! € Rep(G') is defined to be the functor
%

Tyr = B 1a(By (=) @ 10y 1) = K 1y (R H(=) ® ICy1) : Shv(Bung xCT) = Shv(Bung xCT).  (1.34)

We define the moduli space of G-Shtukas with I-legs to be the stack defined by the fiber product

ShtGJ —_— HkG,I

l l(%I,F‘rob o)

Bung Xid
Bung XCIA—G> Bung x Bung xC?

We still use Iy : Shtg;r — C! to denote the map remembering the legs. We also have the obvious notion
ShtG7,\I C ShtG,I (OI“ ShtG,VAI C ShtG,I).

We have the moduli space Hké’ ; by adding a rational X-section to the data of Hk¢, ; that is regular for
each &;. Similarly, we have moduli spaces Shtgyl, Hk)G(,/\I, and Shté)\l.

1.6. Acknowledgment. The author would like to express his sincere gratitude to his supervisor, Zhiwei
Yun, for his invaluable guidance, insightful feedback, and constant support throughout the writing process
of this article. This work would never have come out without his help. This work originates from the
collaborative work [LW25] of the author and Shurui Liu. The author would like to thank Shurui Liu for
many inspiring discussions, especially drawing the author’s attention to [AGK22b, Corollary 3.3.7], which
is one of the starting points of this work. Also, the author would like to thank Tsao-Hsien Chen, Yiannis
Sakellaridis, Yakov Varshavsky, and Lingfei Yi for helpful discussions.
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2. PRELIMINARIES

In this section, we introduce the preliminaries for the article.

e In §2.1, we recall the formalism of categorical trace.
e In §2.2, we develop the theory of cohomological correspondences with kernel.
e In §2.3, we explain the compactification of the map = : Buné — Bung.

2.1. Categorical trace. In this section, we recall the formalism of categorical trace. We refer to [Zhu25,
§7.3] for a more detailed treatment.
In the following, by a category, we mean either 1-category, 2-category, (0o, 1)-category, or (0o, 2)-category.

Definition 2.1 (Categorical trace). Suppose (C,®, 1¢) is a symmetric monoidal category. For each dual-
izable object z € C and an endomorphism F € Ende¢(z), we define the categorical trace of F' to be the
element

tr(F,z) € Ende¢(1c)

defined as the composition

. F®id .
IC“*>$®J;V&>$®$VL>1C_

\ \% \

Here, zV is the dual of z, u, : l¢ > z® ¥ and ev, : x ® x¥ — 1¢ are the unit and counit map for the

duality between x and zV.
When C is a 2-category or (0o, 2)-category, the categorical trace admits the following functorial property.

Definition 2.2 (Functoriality of trace). Suppose (C,®, 1¢) is a symmetric monoidal 2-category (or (oo, 2)-
category). For any objects x,y € C and an adjoint pair of morphisms

L,

X )
& Y
we use RY : ¥ — y" to denote the map dual to R given by

RV \/ id®uy T ®y®y\/ id® R®id z ®x®y\/ ev, ®id y

Suppose we are given F € End¢(x), G € End¢(y), and a 2-morphism 7 : Lo F — G o L, we define the
2-morphism
tr(n) : tr(F,x) — tr(G, y)

to be the 2-morphism from the upper route to the lower route in the diagram

F®id
1c—>x®xv S @Y —>1c

/ Jmf/ W/ [ (2.1)

e —2s yoy 229 ey 2 1,
Here the 2-morphism ~ is defined as
Y:(L®RY)ou, = (L®ev,®id) o (1, ® R®@id) ouy, = ((Lo R) ®id) ouy — uy,.
The 2-morphism 9§ is defined as
§:evy > evyo((RoL)®id) ¥ ev, o(R®ev, ®id) o (1, ® L®id)) = ev, o(L® RY).

Example 2.3. Consider the symmetric monoidal (oo, 2)-category (Pr’, @, Space) consisting of presentable
(00, 1)-categories with continuous (i.e. colimit preserving) functors. Here Space € Prl is the category of
spaces. The construction above assigns to each dualizable presentable (oo, 1)-category C € Pr” together
with a continuous functor F' : C — C a space tr(F,C) € Endp,z(Space) = Space. Moreover, given another
D e Pr’ equipped with a continuous functor G : D — D, suppose one has a continuous functor L : C — D
preserving compact objects (i.e. admits right adjoint R : D — C in prl ), for each natural transformation
n:LoF — Go L, one gets a map between spaces tr(n) : tr(F,C) — tr(G, D).
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Example 2.4. For each algebra object (A, ®) € pr- (i.e. a presentable symmetric monoidal (oo, 1)-category
such that ® is continuous), one can consider the (co,2)-category of linear categories over A defined as
LinCat 4 := LMod4(Pr"). This defines a symmetric monoidal (co,2)-category (LinCat4,®4,.A4). The
discussion in Example 2.3 carries over by requiring linearity over A everywhere, and we obtain tr4(F,C) €
Endpincat, (A) = A and map tra(n) : tra(F,C) — tra(G, D).

Example 2.5. Continuing with Example 2.4, suppose A is rigid. Then C € LinCat 4 is dualizable if and
only if C is dualizable as an element in Pr’. The most important cases for us are when A = Vecty, for a field
k, and A = QLisse(C?) for a curve C over k and a finite set I. Here, the category QLisse(CT) is defined in
[AGKT22¢, Definition 1.2.6].

2.2. Cohomological correspondences with kernel. In this section, we develop the theory of cohomo-
logical correspondences with kernel. In this section, by an algebraic stack, we mean an Artin stack locally
of finite type over a field F.

2.2.1. Definition. Consider a correspondence of algebraic stacks
A 202 A,
Given K € Shv(C).

Definition 2.6. For any Fy € Shv(4g) and F; € Shv(A4;), a cohomological correspondence between Fo, Fi
with kernel K is an element

¢ € Corre x(Fo, F1) == Homo(cf-‘,]-'o ® ]C7C!1f1).

Remark 2.7. When K = k- (—d) for d € Z, this is the usual notion of cohomological correspondence of
degree d.

2.2.2. Push-forward. Consider a map of correspondences
A 20 25 A
| lf J720- (22)
B <% p_%, B,

Suppose the right square of (2.2) is pushable (i.e., the map C' — A x g, D is proper). Given F; € Shv(A;)
fori =0,1, K € Shv(C) and L € Shv(D) together with a map « : f*£ — K, one can define the push-forward
of cohomological correspondence which is a map

fi: Corre e (Fo, F1) = Corrp,£(fag,1Fo, fa,,1F1)
defined such that for any ¢ € Corre x (Fo, Fi) = Hom"(c§Fo @ K, ¢y F1), we have
fie:dsfag 1 Fo®@ L — fickFo@ LS filcsFo @ f*L) — filcgFo @ K) — fick Fi — di fa, 1 Fr.

Here, the first map uses the base change map for pushable square (see [F'YZ23, §3.2]), the second map uses
projection formula for f, the third map uses a: f*£ — K, the fourth map uses the map ¢, the final map is
the Beck-Chevalley base change map for the left square of (2.2).

Example 2.8 (Push-forward Borel-Moore homology class). Consider the map of correspondences
S+-—C—>8
idl lf lid‘ (2.3)
S+t _p-4,5
The condition that the right square is pushable is equivalent to requiring f to be proper. Note that

Corre xc(kg, kg) = HPM(C/S,K) = Hom’ (K, weys) and a similar statement holds for D. The push-forward
of cohomological correspondence gives for each o : f*£ — K a map

i HFM(C/S,K) — HFY(D/S, £).

In particular, when K = k., £ = kp, and « is the natural map f*kp — k., this gives the usual proper
push-forward of Borel-Moore homology class.
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2.2.3. Pull-back. In this section, we switch to derived algebraic geometry and consider derived algebraic
stacks. For applications in this article, one can safely work within classical algebraic geometry and pretend
all the quasi-smooth maps involved are smooth. Consider the same diagram (2.2) but assume the left
square is pullable of defect d (i.e., the map C' — Ay xp, D is quasi-smooth of relative dimension d). Given
Fi € Shv(B;) for i = 0,1, K € Shv(D) and £ € Shv(C) together with a map « : £{—2d) — f*K, one can
define the pull-back of cohomological correspondence which is a map

f* : COITD,)C(]:(),]:l) — COI‘I‘C’[;(fZO.Fo, f:h]:l)
defined such that for any ¢ € Corrp x (Fo, F1) = Hom®(ciFo ® K, ¢, F1), we have
Fre (e fa,Fo) ® L — frdsFo @ fK2d) S f*(dyFo @ K)(2d) — f*dyFi(2d) — ¢y fh, Fi.

Here, the first maps uses a, the third map uses ¢, the last map uses the base change map f*d}(2d) — ¢} Th,
for pull-back square of defect d (see [FYZ23, §3.5]).

Example 2.9 (Pull-back of Borel-Moore homology class). Consider diagram (2.3). The condition that the
left square is pullable of defect d is equivalent to requiring f to be quasi-smooth of relative dimension d. The
pull-back of cohomological correspondence gives for each « : £{—2d) — f*C a map

f*:HEM(D/S K) - HEM(C/S, L).

When K = kp, L = ko(2d), and « is the natural map k- — f*kp, this gives the usual pull-back of
Borel-Moore homology class along a quasi-smooth map.

2.2.4. Specialization. In this section, we use 7 to denote the generic point of AL and s = 0 € AL(F). For
any algebraic stack A over A}, one has the nearby cycle functor ¥ : Shv(4,) — Shv(4;).
Consider a cohomological correspondence over AlL:
A 02 A,
Given F; € Shv(A; ) for ¢ = 0,1, K € Shv(C,), £ € Shv(C;) together with a morphism « : £ — UK, one
can define the specialization of cohomological correspondence to be the map

¥ : Corrg, x(Fo, F1) = Corrc, (¥ Fo, ¥F1)
defined such that for any ¢ € Corrc, x(Fo, F1) one has

e : (e, UFo) @ L — W(ch, Fo) @ UK — U(ch, FO K) % wel | Fy — ¢\ jUF.
Example 2.10 (Specialization of Borel-Moore homology class). Suppose the correspondence has the form
SECSS.
The construction above defines for each a : £ — WK a map
U HyM(Cy /Sy, K) — Hg M (Cs /S5, L),

which coincides with the usual specialization of Borel-Moore homology class when K = ECW, L = k¢, and
o ‘I’Ecn — ECS is the natural map.

2.2.5. Geometric trace construction. In the following, we work with algebraic stacks over a base algebraic
stack S. For any such stack A, we define the category Shv(A)yra C Shv(A) to be the full subcategory of
sheaves that are ULA over S. We use Dg : Shv(A)uyra — Shv(A)J4 to denote the relative Verdier duality
functor.

Consider a self-correspondence between algebraic stacks (A <2 C' <% A) with a kernel K € Shv(C). Given
F € Shv(A)ura and a cohomological correspondence ¢ € Corre i (F, F) = Hom®(c§F @ K, ¢} F). Consider
Cartesian diagram

Fix(C) ———

P J{(Clu co)

A2 4 AxgA
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Definition 2.11. We define the geometric trace of cohomological correspondence ¢ to be the element
trs(c) € Hy M (Fix(C)/S, Klpix(c)) = Hom® (K|pi(c), Wrix(c)/s)
given by the composition
Klpix(cy ="K
25 i*Hom(c F, ¢\ F)
5 i*(c1, ¢o)' Hom(pry F, pry F)
— p'A*(Dg(F) g F)
=0/ (Ds(F) ® F)
- p!WA/S
= WFix(C)/S

The third row uses isomorphism Hom(cjF,c)F) = (c1,co) Hom(prs F,pr} F), the fourth row uses base
change map i*(¢; x ¢g)' — p'A* and the natural isomorphism Hom(prj F, pr} F) = Dg(F) K F, the sixth
line uses Dg(F) @ F = wa/s-

Remark 2.12. When K = k., the definition above coincides with the definition in [FYZ23, §4.1].

Remark 2.13. We call the above construction a geometric trace to distinguish it from the categorical trace
considered in other parts of the article. Note that the diagram (2.4) can not be obtained from the diagram
(2.1) by taking C = LinCatgy,(s), = Shv(4), and y = Shv(S) due to the failure of the categorical Kiinneth
formula. There are two ways to understand the geometric trace via categorical trace: It can be either
understood as a categorical trace in Lu—Zheng’s category, as in §2.2.10, or as a functoriality of categorical
trace in the geometric Langlands setting by putting a nilpotent singular support condition which remedies
the categorical Kiinneth formula.

2.2.6. Geometric trace as a natural transformation. Now we give another description of the geometric trace

trs(c) € Hom® (Klpix(c), wrix(c)s) = Hom" (frix(c) 1 Klrix(c)s ks)-
Here we use frix(c) : Fix(C') — S to denote the structural morphism of Fix(C'). We use f : A — S (resp,
fa: Axg A— S) to denote the structural morphism of A (resp. A xg A).

Consider correspondence (A xg A +—— axid oy xg A —— coxid, 4 x g A) and the map pry : C xg A — C which
is projection onto the first coordinate. We have the lax commutative diagram

Shv(s) 247, Shv(ffox}dfﬁ) ﬂilé V(A 4) £25 Shv(s)

l /le( ®]—'®st?§ i f2| ®]—'IZSDS/ l (2.4)
hv(

Shv( —d ShV(S) —d Shv(S) —d Shv(S)

We now explain the three natural transformations in (2.4):

e The natural transformation vr is defined by
vF 21 (ALf (=) @ FRs Ds(F)) = farAi(f* (=) @ F@Dg(F)) = fi(f () ®ways) = — @ fif'kg — id.

The first map is given by the projection formula for A, the second map is given by fa1A; = fi and
F ®@Ds(F) = ways, the third map is given by the projection formula for f, the final map is given
by the adjunction map for adjoint pair (fi, f').

e Consider the cohomological correspondence ¢ Xid € Correxga ki, (FRk,, FXE,). The natural
transformation 7.x;q is given by

Nesgia : fa,((co x id)1(pri K ® (e1 x id)*(—)) @ F g Dg(F)) 5 fai(— @ c1,(chF @ K) Kg ]D)S(]-")).

(2.5)
= fa,(— @ FWg Dg(F))
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The first isomorphism comes from several applications of base change isomorphisms and projection
formula, the second map comes from the cohomological correspondence ¢ : ¢11(c;F @ K) — F. Note
that the middle square in (2.4) is induced from the following more primitive square:

Shv (A 24 dhv (4

- ®f)l / lfv( ®F) - (2.6)

Shv(S) —— Shv(S)

e The natural transformation dr is given by

~

67t AT S for(— @ Atk y) = far(— @ AYF @ Dg(F))) = fo,(— @ F Bg Dg(F)).
The first isomorphism uses the projection formula for A, the second map uses the map k, —
F @' Dg(F), the third map uses the adjunction map for adjoint pair (A;, A').

Note that after evaluating two routes from the left-top corner of (2.4) to the right-bottom corner of (2.4)
on the element kg € Shv(S), we get a map

trg(c) Trix(0), JC\FIX ©) = fi"(co x id)i(pr] K @ (e1 x id)" A1 f*kg) — kg. (2.7)
Lemma 2.14. We have try(c) = trg(c) € HOHlO(fFix(C),IIC|FiX(c),Es)-

Proof. This is a routine diagram chase. We leave it to the reader. (]
2.2.7. Geometric Shtuka construction. In this section, we assume the base field F' = IF,.

Definition 2.15. For each correspondence ¢ : (A <~ C 2% A), we define its Frobenius twist to be the

correspondence ¢V : (A &~ C Lroboco, A). For each cohomological correspondence ¢ € Corrg c(F, F), we
define

¢V € Corrg i (F, F)
° to be the element
D (ctoFrob* FY@ K S (G F) 9K 5 & F
Consider Cartesian diagram

Sht(C) —— C

lp i(cl, Frob oco) -

A—2 s AxgA

Note that Sht(C') is Fix(C) for the correspondence c¢(!). Therefore, the construction in the precious section
gives a map

trgne,s := trg o(—) ) : Corre x(F, F) — HEM (Sht(C) /S, Klsne(c))-

2.2.8. Functoriality of geometric trace I. Now we formulate compatibilities of the geometric trace construc-
tion in §2.2.5 with proper push-forward, smooth pull-back, and specialization. We will leave their proof to
§2.2.10.

Theorem 2.16 (Compatibility with proper push-forward). Consider a morphism of correspondences between
algebraic stacks over S

A2 0 -2, 4

lfA lf lfA (2.8)

S5Note that the two vector spaces Corrg i (F,F) appearing here are different: The first is defined using ¢ and the second is
defined using ¢™®).
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in which fa, f are proper® (hence the right square is pushable). Then the induced map Fix(f) : Fix(C) —
Fix(D) is proper. Given F € Shv(A)uyLa and K € Shv(C), together with a map o« : f*L — K, the diagram

COI‘I"C,K(]:, ]-) % Coer’[;(fA,!}', fA’!}—)

J/trs J/trs

. Fix(f) .
HEM (Fix(C) /S, Klpix(c)) % HEM(Fix(D)/S, Llpin(p))

is commutative. Here the map Fix(f), : HPM (Fix(C)/S, Klpix(c)) = HEM (Fix(D)/S, Llpix(p)) is induced
from the map

a‘Fix(C)

Fix(a) : Fix(f)*(Llpixp)) = (F*L)|rix(c) Klrix(c)

via Fxample 2.8.
Theorem 2.17 (Compatibility with smooth pull-back). Consider the diagram (2.8). Assume fa is smooth
and the left square is pullable of defect d. Then the induced map Fix(f) : Fix(C) — Fix(D) is quasi-smooth

of relative dimension d. Given F € Shv(B)yra, K € Shv(D), £ € Shv(C), and a map o : L{—2d) — f*K,
the diagram

Corrp i (F, F) ——L— Corre o (F4F, £1F)

J/trg J/trs

. Fix(f)* .
HEM (Fix(D) /S, Klpi(p)) s HEM (Fix(C)/S, Llpix(c))

is commutative. Here the map Fix(f)* : HP™ (Fix(D)/S, Klrix(p)) — HEM (Fix(C)/S, Llpix(c)) is induced
from the map

alFix(C)
e

FlX(O[) : Elle(C)<_2d> (f*K:)|F1x(C) :> le(f)*(Klle(D))
via Example 2.9.
Recall we use 7 to denote the generic point of A} and s to denote the zero point of AL.

Theorem 2.18 (Compatibility with specialization). Consider an algebraic stack S over AL. Given a
correspondence between algebraic stacks over S':

AL C A,
together with sheaves F € Shv(A,)ura, K € Shv(Cy), £ € Shv(Cs), and a map o : L — UK, the diagram

Corrg, i (F,F) kLl Corre, ¢(VF,UF)

ltrsn J{trss

HPM (Fix(Cy) /Sy, Klrix(e,)) —— HEM (Fix(Cy)/Ss, Llmixe,))

is commutative. Here the map W : HPM (Fix(Cy)/Sy, Klrix(c,)) = HF Y (Fix(Cs)/Ss, Llpix(c.)) is induced
from the map

FiX(CK) : E'Fix(Cs) — (\I}’C)|Fix(cs) — \I’(’C|Fix(cn))
via Example 2.10.

Remark 2.19. Note that theorems above with constant kernel were proved in [Var07] and [LZ22] by slightly
different methods for schemes. The argument of [L.Z22] can be easily generalized to Artin stacks (see [FK24]).
We will also prove these theorems by generalizing the argument of [L722].

6By a proper morphism between algebraic stacks, we mean a map representable in proper algebraic spaces.
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2.2.9. Functoriality of geometric trace II. Now we generalize Theorem 2.16 to the case that f admits com-
pactification with contracting boundary. The main result in this section is Theorem 2.27.

Our strategy follows [Var07][GV24][FK24], in which they prove compatibilities of geometric trace with
restriction to a closed substack on which the correspondence is contracting in different settings. As they did
in loc.cit, we use deformation to the normal cone, which has very simple behavior along a substack on which
the correspondence is contracting.

We begin with the definition of a correspondence contracting on a substack following [Var(07, Defini-
tion 1.5.1] (in the scheme case) and [FK24, Definition 7.2.1] (for Artin stacks):

Definition 2.20. Consider a correspondence between algebraic stacks over S
c: (A& 02 A).

Let Z C A be a closed substack defined by an ideal sheaf 7, C O 4.

e We say that c stabilizes Z if ¢§Z; C ciZz.
e We say that cis contracting near Z if ¢;T; C c{I and there exists n € Z>q such that ¢T3 C ;2.

Example 2.21. Given a correspondence between algebraic stacks ¢ = (A <% C % A) defined over S/F,,.
Then ¢! is contracting on Z if ¢ stabilizes Z.

For Z stabilized by ¢, denote Cz := C'X 4 Z in which we are using ¢; : C' — A. Consider the correspondence
Dy (4) - De, (€)% Dy (4)

where Dz (A) is the deformation to the normal cone of A along the closed substack Z and similarly for
D¢, (C). This correspondence is defined over A}, whose fiber over any S-point of A} which is disjoint from
zero is identical to (A <~ C' =% A), while the fiber over 0 € A} is identified with

N(co)

N (4) & N () Nz (A)

where Nz(A) is the normal cone of A along Z and similarly for N¢, (C).
The following are some easy facts:
Lemma 2.22. Consider a correspondence ¢ between algebraic stacks over S
A0 A

with a closed substack Z C A on which c is contracting. The following statements are true:

(1) The set-theoretic image of N(cg) : Noy, (C) = Nz(A) is contained in Z C Nz(A).

(2) The natural map defines an open and closed embedding Fix(Cz)rea C Fix(C)red-

(3) The natural map defines an isomorphism Fix(Ne, (C))red = Fix(Cz)red-

(4) We have disjoint decomposition Fix(Dc, (C))rea = Fix(Cz)rea X5 AL [[(Fix(C)rea\ Fix(Cz)red) X s

(A5\{0}).

Proof. (1) is [FK24, Lemma 7.2.4]. (2) is [FK24, Proposition 7.5.4]. (3) is a consequence of (1). (4) is [FK24,
Proposition 7.5.5].” O

In this case, we call the nearby cycle functors ¥ : Shv(A) — Shv(Nz(A)) and ¥ : Shv(C) — Shv(N¢, (C))
specializations.
Note the following property of the W:

Lemma 2.23. The natural transformation o : iy 4o W — iy is an isomorphism. Here iz : Z — Nz(A) is
the zero section, iz : Z — A is the natural inclusion.

Proof. This is [GV24, §7.5(b)]. O

The following is a direct consequence of Theorem 2.18:

"The formulation in loc.cit is not correct as stated. The proof in loc.cit shows what we state here.
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Proposition 2.24. Consider a correspondence c between algebraic stacks over S
AL C A

with a closed substack Z C A stabilized by c¢. For F € Shv(A)upa and K € Shv(C), the diagram

Corre x (F, F) v Corry,., () wx(VF, OF)

Lﬁrs J/trs

HPM(Fix(C) /S, Krix(cy) —— HFM (Fix(Ne, (C))/S, (UL [Fix(ve, (©))
1s commutative.
We have the following corollary which is generalization of [GV24, Corollary 5.6(c)]:
Corollary 2.25. In the setting of Proposition 2.2/, assume moreover that c is contracting along Z. If
Fl|z =0, then the composition
Corro x (F, F) 25 HEM (Fix(C), Klix(c)) ‘oz, HEM(Fix(Cy), Klpix(c))

is zero. Here, the map ic, : Fix(Cz) C Fix(C) is an open and closed embedding on the reduced substacks by
Lemma 2.22(2) and iy, is the natural restriction map.

Proof. Applying Lemma 2.23 to Cz C C and using Lemma 2.22(3), we get a natural isomorphism
(UK |Fix(Ne, () = Klrix(oz)-

Under this isomorphism, one can check that the restriction map

i, HPM (Fix(C) /S, Klpix(cy) = HEM (Fix(C2)/ S, Klrix(c))
is identified with the map

U H(])BM(FiX(C)/SJC‘Fix(C)) — H(j)BM(FiX(NCz(C))/Sa (‘I’K)|Fix(NCZ(c)))
used in Proposition 2.24. By Proposition 2.24, we are reduced to show that the composition
Corre i (F, F) = Corty,, ¢y uc(WF, WF) 25 HPM (Fix(Ne, (€))/S, (WK) |pix(xe, )

is zero. Note that

Corry,. (). (WF, WF) = Hom® (N (co)* WF @ UK, N(c1)' WF).
By Lemma 2.22(1) and Lemma 2.23, we know

N(co)*WF = N(co)*iz0,iz0WF = N(co) iz0izF = 0.

This implies CorrNcZ(c)yq,,c(\I/]:, UF) =0 and we are done. (Il

Definition 2.26. Consider a diagram of correspondences between algebraic stacks over S:

e We say that [ admits compactification with contracting boundary if the diagram can be extended to
a diagram

in which j4 and j are open immersions, f, f are proper, the two top squares are Cartesian, and there
exists an ideal sheaf 77 C O4 defining a closed substack Z C A on which the middle correspondence
¢ is contracting and Z,.q = 0A := A\ A.
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o We say that f admits compactification if the condition above still holds except we only require Z to
be stabilized by €.

e For 7 € Shv(A)yLa and a compactification as above, we say that F is good for the compactification
if jA,!]: S ShV(Z)ULA.

Theorem 2.27. In the setting of Theorem 2.16 but only requiring that f admits compactification with con-
tracting boundary and F € Shv(A)yLa is good for the the compactification, then the map Fix(f) : Fix(C) —
Fix(D) is proper, and the same conclusion holds.

Proof. The conclusion that Fix(f) is proper follows from Lemma 2.22(2). We can assume f*£ = K since
the general situation can be deduced from this case. Consider the diagram

Corrcf ﬁ(]: ]:) —> Corrcf L(]Al]: jAr]:) #) COI“I"D L(fA |.7: fA |.7:)

ltrs ltrs ltrs (2.9)

Fix(j), AN o Fix(f); .
HPV(Fix(C) /S, 1*Llrsiey) "% HPV (Fix(©)/8, F Llpsey) % HPY (Fix(D)/S, Llsinip)

in which each horizontal map is induced by a push-forward of cohomological correspondence. We want
to show that the outer square of (2.9) is commutative. Theorem 2.16 implies that the right square is
commutative. Therefore, we only need to show the commutativity of the left square.

Define C = C\C and igc : 0C — C. Consider the diagram

Corre, g (F, F) # Corra?*ﬁ(j&g]:,jA,;f)

J/trs ltrs

Fix(5)* p— —% Fix(¢
HEM (Fix(C)/S, * Lle(e)) 2 HFM (Fix(©)/S, T L) S HEFM (Fix(C2)/S. T Llpinics))

(2.10)
By Theorem 2.17, the left square of (2.10) is commutative. Note that the horizontal maps in the left square
of (2.9) are splittings of the horizontal maps in the left square of (2.10) and Fix(igc)* o Fix(j)1 = 0 by
Lemma 2.22(2). Therefore, we are reduced to show Fix(igc)* o trg oj;y = 0. This follows from Corollary 2.25
since (jA,!f")|8A =0. O

We have the following immediate corollary of Theorem 2.27 and Example 2.21:
Corollary 2.28. Consider a morphism of correspondences between algebraic stacks over S/F,

Acd— 0 25 A

PR

Assume f admits compactification and F € Shv(A)yra is good for the compactification. Then the induced
map Sht(f) : Sht(C) — Sht(D) is proper. Moreover, given F € Shv(A)yra and K € Shv(C), together with
a map o : f*L — K, we have a commutative diagram

Corre i (F, F) ——2—— Corrpc(fa,F. farF)

J{trsm,s J{trsm,s
B

Sh |
HEM(Sht(C)/S, Klsue(cy) 0% HEM (Sht(D)/S, Llsu(p))

2.2.10. Lu—Zheng category. In this section, we follow the strategy in [LZ22] to prove theorems in §2.2.8. We
consider variants of 2-categories considered in [L.Z22] adapted to cohomological correspondences with kernel.
Note that similar construction is also made in [FK24].

Definition 2.29. Let S be an algebraic stack. We define the symmetric monoidal 2-category
(LZ(S)1, ®, 1rz(s),)

as follows:
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e The objects are pairs (A, F) where A is an algebraic stack over S, and F € Shv(A4).

e A morphism from (Ag, Fy) to (A1, Fi) is a triple (¢, K, ¢) where ¢ = (4; <= C 2% Ap) is a corre-
spondence, K € Shv(C) is a kernel sheaf, and ¢ € Corre x(Fo, F1) is a cohomological correspondence
with kernel K.

e The composition of morphisms (¢, I, ¢) : (Ao, Fo) — (A1, F1) and (d, L£,0) : (41, F1) — (Aa, Fa) is
(e, M, ¢), where e is the outer correspondence in the diagram

E
N
D C
N N
A, A Ao

where the diamond is Cartesian, the kernel M = difC @ ¢{*L, and ¢ = d o ¢ is the obvious notion of
composition of cohomological correspondences.

e Given two morphisms (¢, K, ¢) and (d, £,0) from (Ag, Ko) to (A1, K1), a 2-morphism 7 : (¢, K, ¢) —
(d, £,0) is a map of correspondences

A 2 0 =25 4
| b
ds do
A1 «——— D —— AO
in which f is proper, together with a map « : f*£ — I such that fic =0.

e The monoidal unit 1pzg), = (S, kg). The tensor product of objects (Ao, Fo) and (A, 1) is defined
as

(2.11)

(Ao, Fo) @ (A1, F1) == (Ao x5 A1, Fo Mg F1).
The tensor product of morphisms is defined verbatim as in [FK24, §5.1.3].

Consider the subcategory LZ(S)) with the same objects, whose l-morphisms are those 1-morphisms
(¢, K,¢) in LZ(S), with K = k-, and whose 2-morphisms are those (f, «) as above such that « : f*kp — k¢
is the tautological map. Then LZ(S) is the original 2-category considered in [L.Z22] (but considering
algebraic stacks instead of schemes) and [FK24] (but working with étale sheaf theory rather than motivic
sheaf theory).

Lemma 2.30. Any object (A, F) such that F is ULA over S is dualizable in LZ(S),, and whose dual is
given by (A, Dg(F)).

Proof. The above statement already holds in the subcategory LZ(S){ C LZ(S) by [LZ22, Theorem 2.16] and
any dualizable object in LZ(S)? is dualizable in LZ(S);. O

The following can be checked directly:

Lemma 2.31. For a morphism (¢, KC,¢) : (Ao, Fo) — (A1, F1) in which F; are ULA over S fori=0,1, we
have (¢,K,¢)Y = (¢, K, ") in which ¢/ = (Ag <= C 25 A1) and " is the image of ¢ under the isomorphism
Hom" (cjFo ® K, ¢} F1) = Hom® (K, (c1, co)' (F1 Kis Ds(Fo))

= HomO(IC, (Co, Cl)!(Ds(fo) |ZS ]'—1))
=~ Hom"(¢;Ds(F1) ® K, cyDs(Fo))
Lemma 2.32. For a proper map f: A — B and F € Shv(A), consider correspondence ¢y = (B Loa= A)
and cohomological correspondence ¢y € Corra . (F, iF) given by the natural adjunction map F — fAF.
Then the map
(CfaEAvcf) : (Av]:) - (vi!}_)
admits right adjoint
(clfaEAvc}) : (Ba f'f) - (Av-F)

in which ¢y = (A=A EN B) and s € Corra g, (fiF,F) is the natural map f*fiF = f*f.F — F.
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Proof. The happens already in LZ(S)? by [.Z22, Lemma 2.9]. O

Note that the 1-category Endyz(s),(1rz(s),) has its objects consisting of triples (A4, K, ¢) where A is an
algebraic stack over S, K € Shv(A4), and ¢ € Corra x(kg,kg) = HPM(A/S,K). For any pair (A,F) €
LZ(S), such that F is ULA over S together with an endomorphism (c, K, ¢) € Endyzg), (4, F), applying the
categorical trace construction in §2.1, one gets an object

tI‘((C, K:? C), (Aa ]:)) € EndLZ(S)! (1LZ(S)!)'

The following follows from unwinding definition:
Proposition 2.33. We have tr((c, K, <), (A, F)) = (Fix(C), Klpix(c), trs(c)) € Endrzs), (1uz(s),)-

Proof of Theorem 2.16. We claim that there is a 2-commutative diagram

(A, F) L9 4 )

(crrky, ij/ / lcf ky,cp)-

(vi! )dﬁ (B N )

To define the 2-morphism 7, consider the map between correspondence

Bl ooy

o foen

B+% DxpA-22.4

in which @ : D xg A — B is induced from the map d; : D — B. Note that (f,cy) is proper by the
pushability assumption. Consider the map (f,co)*pri £ = f*L 2 K. Unwinding the definition of push-
forward of cohomological correspondence in §2.2.2, we know (f,co)i(cs o ¢) = ficocs. Therefore, the data
above defines a 2-morphism 7.

By Lemma 2.30 and Lemma 2.32, we can apply the functoriality of categorical trace Definition 2.2 to
obtain a 2-morphism

tr(n) : (Fix(C), Klpix(c), trs(c)) = (Fix(D), Llpix(p), trs(fi¢))-
Using Lemma 2.31 and unwinding the construction of Definition 2.2, we know that the natural transformation
tr(n) contains the data Fix(«a) : Fix(f)*(L|pix(p)) — Klrix(c). This forces Fix(f)itrs(c) = trs(fic) and we
are done. (]

Proof of Theorem 2.17. One can define a 2-category LZ(S)* which has the same objects and 1-morphisms
as LZ(S), but with 2-morphism given by the same diagram of correspondence (2.11) and kernel but with f
quasi-smooth of some dimension d together with a map a : £{—2d) — K such that f*o = ¢. Then Lemma
2.30, Lemma 2.31, and Proposition 2.33 still hold in this case. The analogue of Lemma 2.32 is the following
easy lemma:

Lemma 2.34. For a smooth map f : A — B of relative dimension d and F € Shv(B), consider correspon-
dence ¢y = (A=A EN B) and the tautological cohomological correspondence ¢y € Corray, (F, f*F). The
map
(¢t ka ) (B,F) = (A, fF)
admits right adjoint
(Cf7EA<2d>vcf) : (Avf*f) - (Bv}—)
in which ¢y € Corr 4y, , (2ay(f*F,F) is the natural map f*F(2d) = f'F.

The rest of the proof remains the same as the proper push-forward case. O

Proof of Theorem 2.18. One can easily reduce to the case £ = W/C. In this case, one can define 2-categories
LZ(S), (resp. LZ(S)s) by modifying the definition of LZ(S), by requiring the sheaves defined only on the
generic fiber (resp. special fiber) instead. Moreover, on the level of 2-morphisms, we require the map f in
(2.11) to be an isomorphism. Then Lemma 2.30 and Lemma 2.31 are true for LZ(S),, and LZ(S)s. Consider
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the (strict) symmetric monoidal colax functor ¥ : LZ(S), — LZ(S), defined as follows: On objects, one
define ¥(A, F) = (4, TF). On l-morphisms, one define ¥(c, K, ¢) = (¢, UK, Uc). Note that for morphisms

K, 4L,
(Ao, Fo) ko, (A1, F1) LGN (Az, Fa),

there is a 2-morphism
U((d,L,0)0(c,K,c)) = (D xa, C,U(LNy, , K),¥(doc))
— (D xa, C, V(L) |X|A1,s U (), oo Ue).
=U(d,L,0)o¥(c,K,¢)
Here, the morphism in the second row is defined by the natural map V(L) Ky,  V(K) — V(L Ky, , K).
There is an obvious extension of ¥ to 2-morphisms. This defines the colax functor, which can be made
symmetric monoidal by [LZ22, Proposition3.1.> For z = (A,F) € LZ(S), where F is ULA over S,

note that U(zx) = (A4, PF) is still dualizable since ¥F is ULA over S, (by adapting the proof of [L.7Z22,
Corollary 3.9]). Consider F' = (¢, K, ¢) € Endpy(s), (z). Note that we have 2-commutative diagram

U(uy) T(evy)
7 o
1Lz(s)sﬂuw;?($) @U(z") — ¥(x) @ ¥(zY) 7 uzs).

in which the 2-morphisms v and § are induced from the natural map k, — Wk Ay By the colax property
of ¥, we get a 2-morphism

1+ (Fix(C), ¥(K|rix(c), ), Y trs(c)) = ¥(tr(F, z)) = tr(V(F), ¥(z)) = (Fix(C), (VK)|rix(c),, trs ().

After checking that this 2-morphism contains the natural map a : (VK)|rixc), — ¥(K|rixc),); we get
\I/tI'S(C) = trs(‘l/c).
O

2.3. Relative compactification. In this section, we assume that the G-variety X is affine spherical. We are
. _ 5 X . . . .
going to construct a map 7 : Bun, — Bung serving as the relative compactification of m : Buné — Bung.

2.3.1. Preliminaries on spherical varieties. We briefly review the theory of spherical varieties relevant to us.
We refer to [SW22] for a more detailed treatment.’

In this section, we work with varieties defined over a field F. By a spherical variety, we mean a normal
G-variety with an open B-orbit. For an affine algebraic variety X with an action by an algebraic group G,
we denote X / G := Spec (O(X)%). For an affine spherical G-variety X, the quotient X / N is a T-variety,
on which the T-action factors through a quotient T — Tx, making X / N a toric Tx-variety.

For simplicity, we first discuss the theory when charF = 0. In this case, we have a decomposition into
irreducible representations F'(X) = €, ¢ x«(ry) Va- Define cx € X*(Tx) such that O(X) = P, Vo

For each G-invariant discrete valuation v on X, by restricting v to all B-eigen functions on X, one obtains
an element in X, (Tx)g. All elements in X, (TX)Q obtained in this way generate a cone V C X, (TX)Q7 which
is a fundamental domain for the little Weyl group Wx acting on X,.(Tx)g.

There exists a canonical filtration {Fy C O(X)} defined as follows: The subspace Fy C O(X) is the direct
sum of all sub irreducible G-representations of O(X) with highest weight p satisfying (A — p, V) < 0. Then
one can form the Rees algebra O(Z") := @)\Gx*(TX) F\®e* C O(X xTx) and define the affine degeneration
of X to be the variety 2 := Spec (O(2")). Define Tx & := Spec (Brex-(re),0my<0 b e), which is a toric
Tx ss-variety where Ty o5 := T'x /Z(X)°. Here Z(X)° is the torus satisfying X, (Z(X)°) 2 VN-VNX,(Tx).

Both varieties 2" and T'x ¢ carry natural G x Tx-actions. There is a natural G x T'x-equivariant map
a: Z — Txs. Weuse 2° C X to denote the open subvariety whose intersection with each fiber
of a is the open G-orbit of the fiber. Denote 2°° := a=!(Tx). Then there is a canonical isomorphism
Z° =X xTx/Z(X)° as G x Tx-varieties.

We will need the following fact from [SW22, §2.2.2]:

Lemma 2.35. The stack 2 /Tx is representable by a proper algebraic variety.

8This is for schemes, but the same conclusion holds for algebraic stacks since one can check smooth locally.
9The author is grateful to Yiannis Sakellaridis for explaining the theory of affine degeneration of spherical varieties, especially,
Lemma 2.35. Any mistake in the section is due to the author.
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Proof. This is mentioned in [SW22, §2.2.2] without proof. We provide a proof for completeness. First note
that T'x (F) acts freely on 2°*(F). Indeed, one only needs to check that Tx (F') acts freely on the F-points
of the special fiber of Z®* — Tx s, which follows from the fact that this special fiber is homogeneous
horospherical with associated torus Tx. Second, note that 2°® can be covered by Tx-stable open affine
sub-varieties. Indeed, as a spherical G x T'x-variety, 2 ® can be covered by B x Tx-stable open affine
sub-varieties, which are automatically Tx-stable. These two facts imply that the quotient stack 2™®/Tx is
representable by a scheme, which is clearly normal and of finite type.

We claim that 2°®/Tx is a spherical G-variety. In fact, we only need to check that 2°®/Tx is separated.
Indeed, since Z™® admits a unique closed G x T'x-orbit, we know that 2™®/Tx admits an open affine subset
U intersecting non-trivially with every G-orbit. For any two maps aj,as : Spec (R) — £°*/Tx inducing the
same map on Spec (Frac(R)) for a discrete valuation ring R, via translation by G, one can assume that a1, as
has their image lying in U. This implies a; = as, hence, the separatedness of 2" /Tx.

Note that the valuations of the G-stable divisors of 2°®/Tx generate exactly its valuation cone. We know
that the colored cone of 2°®/Tx contains the valuation cone, hence, it is a proper algebraic variety. O

When charF' > 0, we make the following assumption:

Assumption 2.36. The G-representation O(X) admits a good filtration in the sense of [Jan03, §11.4.16].
Moreover, we assume the good filtration can be chosen to be multiplicative. That is, there exists an increasing
filtration {F) C O(X)}rex+(ry) " such that:

e For each A € X*(Tx),
Vi, A Ecx

F,\/F<,\g{ 0\ ¢ cx

Here, V) € Rep(G) is the costandard object'! with highest weight \;
e The multiplication on O(X) preserves the filtration { F } xe x+(7y), that is, it induces Fx®F, — Fxy,
for A, p € X*(Tx).

(2.12)

Under this assumption, the entire argument in characteristic zero case can be modified to work using the
filtration {F\ C O(X)}aex+(1yx)-
Here are some examples that Assumption 2.36 is satisfied:

Example 2.37 (Group case). When G = H x H and X = H = H\H x H for a split reductive group H, by
[Jan03, §I1.4.20], we know that Assumption 2.36 is satisfied. Note that the multiplicativity of the filtration
is automatic since X is wavefront.'?

Example 2.38 (Rankin—Selberg case). When G = GL,, x GL,,—1 and X = GL,, = GL,,_1 \ GL,, x GL,,_1,
by applying [Jan03, §I1.4.24], one knows that GL,_; C GL, is a good pair (also called a Donkin pair).
Therefore, Assumption 2.36 is satisfied. The multiplicativity of the filtration is automatic since X is wave-
front.

Example 2.39 (Symmetric varieties). When X is a symmetric variety and F' is algebraically closed, by
[BS24, Theorem 2], one knows that Assumption 2.36 is satisfied when charF # 2.

2.3.2. Relative compactification. In this section, we assume Assumption 2.36 when charF > 0. Moreover,
we assume that X = H\G is G-homogeneous. In this case, we have 2° C Z°°.
Define

Buny, = Map(C, 2°°/G C 2'/G)/Tx
B:= Map(C, TX,SS)/TX-
Note that Bung contains an open substack

Buny /Z(X)° = Map(C, 2°/G)/Tx

10T he partial order on X*(Tx) is the same as for the filtration {Fx}xex=(Tyx) in characteristic zero case. That is, A < p if
and only if (A —p, V) > 0.

HIn the notation of [Jan03], one has V = HO(A).

127 spherical variety X is called wavefront if X.(T) — X.(Tx) maps the dominant cone in X, (T)q onto —V C X«(Tx)q-
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and B contains an open substack
*/Z(X)o = Map(cv TX,SS)/TX~

We have a Cartesian diagram

Bungy /Z(X)° —— Bung

l l (2.13)

x/Z(X)° —— B
—X
Note that there is a natural map 7 : Bun; — Bung.
oy _ 55X . . .
Proposition 2.40. The map 7 : Bung, — Bung is representable in proper algebraic spaces.

Proof. Consider BunngX :=Map(C, Z*/G xTx C Z /G x Tx). We have a Cartesian diagram

=X =X
Bung —— Bung,r,

| |

x/Tx — Bunr,,

where the map */Tx — Bung, is induced by the trivial Tx-bundle over C. This implies that Bun)G( —

=X . . .
Bung, 1, is a closed immersion. Therefore, we only need to show that each the natural map

—X
Ty : Bung,r, — Bung
is representable in proper algebraic spaces after restricting to connected components of Bunr, .

We use £ € C to denote the generic point of the curve C'. We first show that 7, : mngx — Bung is
representable in algebraic spaces. By [Sta25, 0DSL], we only need to check that for each 2 = Fg € Bung(F),
the fiber ﬁ;i (x) has trivial stabilizers. In fact, for y = (Fq,Fry,$: Fa Xc Fry = Z) € f;; (z)(F), the
stabilizer of y is the subgroup of Tx stabilizing the image of s, hence is contained in the stabilizer of
s(&) € Z* (&) for any £ € (Fa X Fry)(€) projecting to €. Note that T'x acts freely on 27°. It follows that
the stabilizer above must be trivial.

Then we show that the map 7, is proper. Since T, is of finite type (after restricting to a connected
component of Bung, ) and quasi-separated, using the valuative criterion for properness [Sta25, 0CLY], we
only need to show that for any discrete valuation ring R with D = Spec R and D° = Spec Frac(R), any
diagram

=X
o
D° —— Bungyr,

l //\, l

D— Bung

admits a unique (and up to a unique isomorphism, same for below) dashed arrow making the diagram
commutative. Equivalently, this is to say that given any G-torsor ag : Fg — D x C' and a G-equivariant
map ape : Fg|lpexe — £ /Tx whose restriction ape|poxe : Falpoxe — 2 /Tx has its image lying in
X' /Tx C Z /Tx, there exists a unique map a : F¢ — £ /Tx extending apo and whose restriction a|pxe :
Falpxe = Z /Tx has image lying in Z°*/Tx C Z /Tx. Note that Z™®/Tx is a proper algebraic variety by
Lemma 2.35, by valuative criterion for properness, we know that there exists a unique map ag : Fg|pxe —
Z'*/Tx extending ape|pexe. This implies that there exists a unique map as : Fao|pxeupoxc = 2 /Tx
extending ap. and whose restriction to Fg|pxe has its image lying in £2*/Tx C 2 /Tx. Since Fg is
normal, Fg|pxeupexc C Fe has codimension two complement, and £ is affine, we know that there exists
a unique desired map a : Fg — 2 /Tx.

O

Remark 2.41. When G = H x H and X = H for a split reductive group H of adjoint type, we obtain
the well-known fact that the relative compactification Buny — Bungy x Bung is proper. This special case
is proved in [FKM20, §A.1]. Our proof simplifies and generalizes the proof in loc.cit.
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3. GEOMETRIC TRACE AND SPECIAL CYCLE CLASSES

In this section, we relate the minuscule homogeneous special cycle classes in §1.3.1 and the diagonal
cycle classes in §1.3.2 to the geometric Shtuka construction (introduced in §2.2.7) of the corresponding
cohomological correspondences. The main results in this section are Theorem 3.2 and Theorem 3.3.

e In §3.1, we prove a general theorem which will be used in the proof of the main results of this section.
e In §3.2 and §3.3, we formulate and prove the main results in this section.

3.1. General formalism in affine homogeneous case. Given an affine homogeneous spherical variety
X. Consider the map of correspondences

¥ nY
Bung xCl Hkél — Bung xCT

lw rmk,, lﬂ : (3.1)
I
Bung XOI — Hng — Bung XCI
We fix dominant coweight A\; € X, (T)% and kernel sheaf K € Shv(Hk¢ 1) supported on Hkg, .
Theorem 3.1. Assume Assumption 2.56 is satisfied. For any F € Shv(Bung)c, the diagram

Corrpex k). (FRkor, FREer) = Corrueg ; c(mF 8 ke, mF K ker)
’ G,I

tr
ltrsm,cf J{ Sht,c!

HPM(Shts,; /O, Klgnx ) ———— HZM (Shte,1 /C”, Kshtg.,)

18 commutative.

Proof. Since K is supported on Hkg y, C Hkg,r, we can restrict to the substack Hké/\l C Hkéﬁl and
Hkg,n, C Hkg, 1, hence all the stacks involved will be algebraic stacks. We will use the same notations for
maps restricted to these substacks. By Corollary 2.28, we only need to show that 7y, is a composition of
maps of correspondences admitting compactification and check the goodness in each step.

For the compactification, we can factor the map of correspondence (3.1) as

X I X X I
Bun} xC! +——————— HkY,, ——— Bund xC

J/ﬂ'l xid J{Trl.Hk,I lﬂl xid

Buny /Z(X)° x €1 +—— HKX,, /Z(X)° — Bun /Z(X)° x C* - (3.2)
J{ﬂ'z xid lﬂ'Q}Hk,] J/Wg xid
Bung xC ¢———— Hkgx, ——— Bung xCT

We only need to show that both 7y my,; and 72 pk,; admit compactification. For m; px,7, one can choose any
proper toric embedding Z(X)° C W and consider

Bung xC1 Hké)\l Bung xC!

J{jl xid ljl,Hk,I J,jl xid

(Bung xW)/Z(X)° x C1 «—— (Hkg 5, xW)/Z(X)° —— (Bung xW)/Z(X)° x C!

J/ﬁl xid J,?I'Hk’l J/ﬁl xid

Bung /Z(X)° x C1 «————— Hk{ ,, /2(X)° ——— Bung /Z(X)° x C!

in which Z(X)° acts diagonally on each stack in the middle row. Here, each upper vertical map is induced
by the inclusion map * = Z(X)°/Z(X)° ¢ W/Z(X)°, and each lower vertical map is the projection to
the first factor. Note that the entire middle correspondence admits a map to W/Z(X)° and the boundary
locus is stable because it is the fiber over OW/Z(X)° C W/Z(X)°. This shows that the factorization above
satisfies the condition in Definition 2.26 and m mx,; admits compactification.
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For the map 72 i 7, we can consider
Bung /2(X)° x C1 «—— HkJ 5, /2(X)° —— Bung /Z(X)° x C!

J/j)(ld J/ij’I l]de

=X —X =X

lﬁxid \FHk’I l?xid

Bung xC! +—n——— Hkgx, ——— Bung xCT

Here the left and right columns both come from the relative compactification Buné /Z(X)° EN Bung L
Bung introduced in §2.3.2 (whose existence relies on Assumption 2.36). The middle column is defined as

follows: recall that Bung can be identified with (the quotient by Z(X)° of) the moduli of (g, s) where Eg is
a G-bundle on C and s : E¢ — Z is a G-equivariant map which generically has its image lying in Z°® C 2.

We take ﬁé{’)\l to be the closed substack of Bung XBung Hka,x, defined as (the quotient by Z(X)° of)

the moduli of tuples (¢1,Eq.2, 1, a,s) where ¢; € C, a: Ea,1lo—{er} = &g 2lc—1e;y 1s an isomorphism of
G-bundles over C' — {c;} with its pole at ¢; bounded by A7, s : g2 — £ is a G-equivariant map generically
has its image lying in 2™ C 2 such that the composition soa: g 1|c—{c;} — £ can be extended to the
entire £g,1. From the definition, it is clear that the middle column, and hence the diagram above, is defined.

The fact that the diagram above satisfies the conditions in Definition 2.26 follows from Proposition 2.40
and the diagram below, in which each square is Cartesian

° —X
Hk , /2(X)° — Hkg ,

l !

Bun® /Z(X)° — Bun,y
+/Z(X)° —— B

Here, the lower square is (2.13), the upper vertical map can be either the left or right Hecke map.
The goodness in each step of compactification follows from the fact that 7y, j1,1, and ji preserve con-
structibility. 0

3.2. Minuscule homogeneous special cycles classes. In this section, assume we are in the setting of
§1.3.1.

Consider the diagram (1.28) and take X = H\G, we have the following result comparing geometric trace
with special cycle class:

Theorem 3.2. Assuming Assumption 2.30, we have
msne1 [Shtarp , /CT] = trgug,cr (T ri[Hkm ., , /Bung xCT)) € HEGD (o), (Shte.r /CTICy [snig ,)-
Proof. Take K = ICy 1 [shts ;2 F = Epun,,» and
¢ = Oy = [Hking, /Bung xCT) € Corrimgy ok (Bpuny, ®ker kpan, Mker(=2d,,)) (3.3)
in Theorem 3.1, we are reduced to show

[Shtsr sy, /CT] = trsn,or ((Hkpy, , /Bung xCT)) € Hyil! (Shtr sy, , /C1).

This follows directly from Theorem 2.17. (]

3.3. Diagonal cycle classes. In this section, assume we are in the setting of §1.3.2 and take G = H x H
and X = H.

Theorem 3.3. We have

(= s = trsuor (Am i [Hka,, , / Bung xC']) € Hom® (a1, (10w, ,, | Isho, )% ker)-
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Proof. By Example 2.37, Assumption 2.36 is satisfied. Therefore, we can apply Theorem 3.1. Take K =
IC)\I S ShV(HkG,]), F = EBunH7 and

c= [HkH)\H,I /BunH XCI] € CorerH I,IC§2 (EBunH XCIvEBunH XCI) (34)
’ NH, I

in Theorem 3.1, we are reduced to show

[ShtH,)\HJ /CI] = trSht,CI([HkH,)\H,I /BunH XCID S HOBM(ShtH)\HJ /CI,IC%SH‘I |ShtHv>‘H,I)).
Note that restriction along the open Schubert cell Sht; \ ng C© Shtp o, , gives an isomorphism

H(?M(ShtH,AH,I /01710{8;,\2&1 |ShtH,>\HJ) = HBM (Sht;i,AHJ /O)

2dAH,I
Applying Theorem 2.17 for the open immersion, we are reduced to show

[Sht% x,, /C' = trong,cr ((Hky 5, , / Bung xC')) e HPM (Shtg x,, /ch

2d’\H,I

which again follows from Theorem 2.17. ]

4. CATEGORICAL TRACE AND GEOMETRIC TRACE

In this section, we interpret the geometric Shtuka construction of a special cohomological correspondence
as a categorical trace. The main result in this section is Theorem 4.9.

In §4.1, we review some basic facts about the geometric Langlands conjecture.

In §4.2, we review the interpretation of Shtuka cohomology as a categorical trace.

In §4.3, we develop some tools to compute the functoriality of categorical trace in our setting.
In §4.4, we formulate and prove the main result in this section.

4.1. Recollections on geometric Langlands. Consider the natural embedding ¢ : Shvnip(Bung) —

Shv(Bung), it admits a right adjoint tg : Shv(Bung) — Shvip(Bung). Also, consider ¢s : Sthilp(Buné) —

Shv(Bun,) and its right adjoint 1o g : Shv(Bung,) — Shvyi,(Bung). We sometimes omit the functor ¢ (resp.

t2) and regard Shvyy, (Bung) (resp. Shvni,(Bung)) as a subcategory of Shv(Bung,) (resp. Shv(Bung,)).
One has the following fundamental result:

Theorem 4.1 ([GR25]). The functor tg : Shv(Bung) — Shvnip(Bung) coincides with the Beilinson’s
spectral projector P defined in [AGKT22¢, §13.4.4]. In particular, tg is continuous.

Consider Ajkg,,, € Shv(Bun%) where A : Bung — BunZ is the diagonal map and define
u:= LR(A!EBunG) € ShVNﬂp(Bun%).
Define
ev:=I.0A*0y: ShVNilp<Bun2G> — Vect.
By [AGK"22¢, Theorem 16.3.3], the exterior tensor product functor

X : Sthilp(Bung)®2 :> Sthilp(Buné)

is an equivalence of categories. In the following, we usually omit the functor X and do not distinguish
detween Shvyy, (Bung)®? and Shvyi,(Bung). Also, by [AGK T 22¢, Theorem F.9.7], for any finite set I, the
exterior product

X : Shvip (Bung) ® QLisse(CT) — Shvyilp (Bung xCT)
is an equivalence of categories. Here we abbreviate Shvyip (Bung xCT) = Shviipx {0} (Bung xCT). From
now on, we do not distinguish between Shvyi, (Bung) ® QLisse(C!) and Shvyi, (Bung xC7) and often omit

the exterior product.
Recall the following result from [AGK " 22b, Theorem 3.2.2]:
Theorem 4.2. The category Shvni,(Bung) admits a self-duality with unit
ue ShVNi]p(Bung)®2

and coumnit
ev: ShVNilp(BuIlG)®2 — Vect.
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One of the adjunction map is given by
a:(ideev)(u® —) = pry o(id x A)* (19 0 LQ’R(A!EBUHG) X—-)— pry o(id x A)*((A;EBUHG) X-)5id

where the first identity follows from definition, the second natural transformation comes from the adjunction
map L o Lo g — id, the third isomorphism is given by base change isomorphisms and projection formulas.
Another adjunction map 5 : (ev®id)(— ® u) — id admits a similar description.

Recall the following properties of Hecke operators introduced in §1.5.3:

Lemma 4.3. (1) The right adjoint of Tyr : Shv(Bung xCT) — Shv(Bung xC7) is
-
h

Tpivry 2 o (BH(=) @ 1Cy1) = 1) (B* (=) @ ICy1) : Shv(Bung xC) = Shy(Bung xC7).

Here ¢! € End(G') is the Cartan involution.

(2) There is a canonical isomorphism of functors Iy |(— ® Ty1(—)) Z I (Te=(vry(—) @ —).

(3) The functor Ty preserves the full-subcategory Shvyi, (Bung xCT) € Shv(Bung xC1), hence, gives
a functor Ty : Shvip(Bung xCT) — Shvyiip, (Bung xCT).

Proof. The first is immediate from the usual six-functor formalism (see [AGIKT22b, 1.1.5]). The second
follows directly from projection formulas (see [AGK22h, Lemma 3.4.8]). The third is [AGK™22¢, Theo-
rem 14.2.4]. O
4.2. Shtuka cohomology as a categorical trace. These is a natural map

Serre
trQLisse(CI)((FrOb Xid)[ o TVI, Sthilp(BunG XCI)) LT—> lL!(ICVI |Shtg,1) (41)

defined as
trQLisse(cr) (Frob xid)y o Tyr, Shvyp, (Bung xC1))
~(ev ®id) o (Frobpun, Xid); o Ty rgiy (U ® ker)
=l 0 (Frobpung xid)1 o Ty rgpiv (¢ © tR(A1kp ) M ker)
=l 0 (Frobpung xid)1 o Ty rgriv ((A1kpun,, ) M ket )
2 (ICy 1 [shte )

in which the third map uses the adjunction ¢ o g — id.
By [AGK " 22a, Theorem 4.1.2, Theorem 5.5.6], we have

Theorem 4.4. The map (4.1) is an isomorphism.

4.3. Duality of functors. We would like to apply functoriality of trace construction in §2.1 to functors
/ =T(P® —) : Shvnip(Bung) — Vect
P,Nilp

for some P € Shv(Bung).. For this purpose, we need to study its right adjoint fp Nilp.R and dual functor

v
fP,Nilp,R'
We first study the version without nilpotent singular support. For each constructible sheaf

P € Shv(Bung)e,

consider the functor
/ :=T:(P® —) : Shv(Bung) — Vect.
’]J

Lemma 4.5. The functor fp preserves compact objects, hence, it admits a continuous right adjoint.

Proof. By [AGK22¢, Proposition F.4.7] the category Shv(Bung) is generated by compact objects of the
form a)Fg where S is an affine scheme equipped with a map a : S — Bung of finite type, and Fg € Shv(S).
is a constructible sheaf on S. Since fp arFs 2 T.(Fs ® a*P) is a perfect complex, we know fp preserves
compact objects. ]
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The right adjoint of fp admits the following explicit description: Consider
/ = —®D(P) : Vect — Shv(Bung),
PR

we have an adjoint pair (fp, fp r)- The first adjunction map is given by

ap : / /PR —@PD(P)) = I'(— ® wBung ) — id. (4.2)

Here, the second map is given by the natural map P ® D(P) — wpune, the third arrow uses the adjunction
map for the adjoint pair (fi, f') for f : Bung — *. The second adjunction map is given by

Bpiid > —® (P& D(P) = (- ®@P) @ D(P) = I'(—®@P) @D(P / / (4.3)
P.R

Here, the first map uses the adjunction kg, — P ®' D(P), the second map comes from the base change
map A*(id x A)' — A'(A x id)* for the Cartesian diagram

A
Bung —=— Bun

lA lidx A

Axid
BunZ, =5 Bung,

the third map uses the adjunction map for the adjoint pair (fi, f').
By restricting to Shvnip,(Bung) C Shv(Bung), one gets functor

/ =T:(— ®P) : Shvnip(Bung) — Vect
P,Nilp

which has continuous right adjoint

/ — & wDP)).
P,Nilp,R

The left and right lax-commutative squares in (2.1) for the functor [, Nilp Pecomes

Vect — ShVNilp (Bung)®2

idl A%N”p lfP,an ®f7§‘an,R (44)

Vect ————— Vect
id

Shvyip (Bung)®? —~— Vect

fP,Nilp ® f;'Nilp’Ri o - J{id . (45)
Vect —a Vect

We now introduce versions of (4.4) and (4.5) without the nilpotent singular support condition, which are
the left and right squares of the diagram (2.4) for S = %, A = Bung, F = P. Consider lax-commutative
diagrams

Vect ﬂf Shv(Bung,)

ldl / lfpm(m (4.6)

Vect —g Vect

Shv(BunZ) Leod’ Vect

[ l / i ) (4.7)

Vect —g Vect
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Here the first natural transformation yp is defined by

- / Ak, 5 To(P @ D(P)) = Te(wpung) — &
PRD(P)

and the second natural transformation dp is defined by

(573 : FC o A*(—)

We want to relate diagrams (4.4)(4.5) to (4.6)(4.7).

Lemma 4.6. We have a natural commutative square

Shvip(Bung)®? 2%, Shy(Bun)

fP,Nilp ® f’l\;,Nilp,RJ/ J{fPMBU’)
Vect ——94 5 Vect

(4.8)

Proof. This following directly from the description f;/ Nipr = Le(—= ® towr(D(P))) 5 Te(— ® D(P)) in
which is second isomorphism follows from [AGK™22b, Proposition 3.4.6]. |

Proposition 4.7. We have commutative cubes

Vect L ShVNilp(Bung)®2
Ak v
Vect 1 @k Shy(Bun)
J (4.9)
Vect l Vect Jrwoe)
Vect \ Vect
and
Shvyip (Bung)®2 i Vect
X \
fP.Nilp ®f7¥,Nilp,R Shv(BunQG) Leqa” Vect
J . (4.10)
VeCt l‘lr/ RtPy VeCt
\ Vect Vect

In the cube (4.9), the back face is (4.4), the front face is (4.6), the right face is (4.8), and the other faces are
equipped with the obvious natural transformations. In the cube (4.10), the back face is (4.5), the front face
is (4.7), the left face is (4.8), and the other faces are equipped with the obvious natural transformations.
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Proof. Note that we have commutative diagram

FC((P X D(P)) ® L2[’27RA!EBung) FC((P X D(P)) ® A!EBunG)
Le(P@pryyo(id x A)*(e2t2,r(Akgyng ) BD(P))) —— Te(P @ pry yo(id x A)*(Aikg,,,, KD(P)))
(4.11)
Here, the vertical maps are the natural ones only involving six-functor formalism, and both horizontal maps
only use the adjunction ¢y o 1o g — id. Unwinding definitions, the two natural transformations from the
top-left-back corner to the bottom-right-front corner in the cube (4.9) can be identified with the two maps

L((PRD(P)) ®tata, RAkpyn,) — k obtained by composing the two routes from the top-left corner of (4.11)
to the top-right corner of (4.11) with the map

L. ((PRD(P)) ® Akpyy,,) = Le(P @ D(P)) = Te(wBung) — k-

This proves the commutativity of (4.9). The commutativity of the second square follows from the following
commutative square

~

Fe(-®—) ——————— Te((- ¥ -) @ Alkpun,)

| |

F(Te(—@P)@D(P)®@ —) —= T'e(— @ P) @ T(— @ D(P))

Here the left vertical map uses the adjunction map (4.3) and the right vertical arrow uses the natural map
Arkpune — PR D(P). The commutativity of this diagram is encoded in the six-functor formalism and is
routine.

O

For later use, we need a version of Proposition 4.7 with legs, which we introduce now. Fix a finite set I,
consider the map I; : Bung xC! — C'. Define

/ — Uy(= ® (PR kpr)) : Shv(Bung xCT) — Shv(C)
P.I

and
/ = / o(t®id) = / ®id : Shvyi, (Bung) ® QLisse(CT) — QLisse(CT).
P,Nilp,I P,1 ‘P,Nilp

Proposition 4.8. We have commutative cubes

QLisse(CT) ueid Shvyilp (Bung)®? ® QLisse(CT)

\ W}d)

(Axid)l} i
JJ‘)/ ,{\mp 2 Jr/\)/,Nup,u @id ShV(BuIlé XCI)

(4.12)

QLisse(CT)

™~

QLiSSG(CI) fp&m(p),[

\

Shv(CT) Shv(CT)

w2
Z
It
Q
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and
Shvnip (Bung)®? ® QLisse(CT) ev &id QLisse(CT)
W}d) \
v . 2 I l“O(LXid)*
fp,Nup ® fp,Nup,R ®id Shv(BunG xC ) Vect
J s
QLiSSQ(CI) J[/ ROTPY, T QLISSG(CI)
Shv(C?) Shv(C7)

in which the natural transformations are natural generalizations of those in Proposition 4.7.

The proof is parallel to the proof of Proposition 4.7.
4.4. Main result.

4.4.1. Special cycle classes as geometric trace. Given P € Shv(Bung). and a cohomological correspondence
(S Homo(P IXECI 5 TVI (P xECI)) = HOIHO(TC*(VI)('P ®E01)7 P |Z|EC1) = Corerc,I,ICVI (P &Ecl 5 P |Z|ECI),
we can apply the second construction of geometric trace via the dlagram (2.4), in which we take S = C/,

the correspondence (A <% C 2% A) = (Bung xC’ <— Hke s LN Bung xCT), K = ICy: € Shv(Hkg ),
F=PRE.r € Shv(BunG xC’I), and the cohomological correspondence ¢(1).
In this case, the diagram (2.4) becomes

(Ade)ll de)vOT

(O 2 by (Bung Eibpne XK Sin(Bun x O A gy oy

l / fmwr % fpmwz / l (4.14)

hv(C?) —94 Shv(cf Shv(cf — 4, Shv(CT)

1(Axid):

By Lemma 2.14, we know that the natural transformation from the upper route to the lower route from
the top-left corner to the bottom-right corner of (4.14) evaluated at ko € Shv(CT) gives

trgne o (¢) = trar (¢M) € HPM(Shtg 1 /CT,ICy 1 [sheg ,)-

4.4.2. Special cycle classes as categorical trace. Restricting the natural transformation 7. in (4.14) to the
full-subcategory Shvyii, (Bung) ® QLisse(CT) C Shv(Bung xC7), we get a natural transformation

(1) Nilp / o(Frob xid), o Ty/1 — .
P,I,Nilp P,I,Nilp

Since the functor : Shvnip(Bung) — Vect admits continuous right adjoint, using the natural

fP,Nilp
transformation 7.1 Ny, and applying the construction Definition 2.2, we get a natural map

tr(n.0) Nip) © trquisse(cr) (Frob xid); o Ty 1, Shviy, (Bung xC1)) = trQLisse(cr) (id, QLisse(CT)).
4.4.3. Relating geometric trace and categorical trace. The main result in this section is the following:
Theorem 4.9. We have a commutative square
trQLisse(cr) (Frob xid)y o Ty Shvaip (Bung) @ QLisse(CT)) ¥ 17 (ICy [shee ;)

(1)
J/trQLisse(CI) (Me Nitp) Lﬁrsm,cf ()

trqQLisse(cl) (ld7 QLiSSG(CI)) = kor
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Proof. Using the duality on Shvyij,(Bung) with unit and counit (u,ev), the element trqisse(cr) (1.0 Nilp)
is computed as the composition of natural transformations in the diagram

u®i n id) 07T, id ev i
QLlsse ch) _u®id, Shvyip (Bung)®? @ QLlsse C']?\j g xid Sﬁeﬁllp Bung)®? ® QLisse(CT) eveid QLlsse CI)

® ®id ® ®id
mlgﬂp f7> I,Nilp, R%fp I,Nilp fP I,Nilp, R%ld

Qlebe(C’I - d QLisse(C' QLisse(CT) - d Qlese(CI)
(4.15)
in which the left and right squares are the two back squares in Proposition 4.8. By Proposition 4.8, there is
a natural map from the diagram (4.15) to (4.14) (such a map means three commutative cubes), which gives
our desired identity.

O
4.5. Proof of main result.

Proof of Theorem 1.10 and Theorem 1.11. Take P = Px in Theorem 4.9 for the spherical variety X in each
case. Theorem 1.10 follows from Theorem 4.9 and Theorem 3.2. Theorem 1.11 follows from Theorem 4.9
and Theorem 3.3. O

5. ISOTYPIC PART OF SPECIAL CYCLE CLASSES

In this section, we study the restriction of special cycle classes on the isotypic part of the cohomology of
Shtukas.

In §5.1, we review some basic properties of the geometric isotypic part.

In §5.2, we study the isotypic part of special cycle classes for split semisimple groups.

In §5.3, we study the isotypic part of special cycle classes for split reductive groups.

In §5.4, we study the isotypic part of special cycle classes which have middle-dimension on the generic
fiber.

In §5.5, we study the isotypic part of diagonal cycle classes.

5.1. Isotypic part of geometric period. In this section, we recall the geometric isotypic part introduced
in [LW25] and its basic properties.

For a G-local system o € Locg (k) and a Hecke eigensheaf L, € Shvyi, (Bung), given an affine smooth G-
variety X, the geometric isotypic part of the X-period integral is defined to be the complex | X Nilp L, € Vect,
which we simply call the geometric isotypic part.

5.1.1. Hecke action. The geometric isotypic part is equipped with Hecke actions, which we now recall. For

V! € Rep(G'), given a cohomological correspondence ¢y r € CorThi ,.1C, 1 (~dr) (PxRker, Px Kker), there
is an induced natural transformation constructed in §2.2.6

ey 1 :/ oTyr — .
X, Nilp,1 X, Nilp,I

Evaluating the natural transformation 7. , at L, M kcr € Shvyip (Bung) ® QLisse(CT), we get a map

acv,,(,:v(,1<—d,>®/XN_1 LU—@cI@/XN_I L,.
;NP ,Nilp

Since there is an obvious isomorphism

Hom’ (V! (—d;) ® / Lo, ko ®/ Ly) = Hom®(D(V.)(—d; + 2r) ®/ Lg,/ L),
X,Nilp X,Nilp X,Nilp X,Nilp

we can also treat Qe ;.0 @S & Map

acv,,U:F<VJ)<—d1+2r>®/ ]LU—>/ L,. (5.1)
X, Nilp X, Nilp
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We say that the map ac,,,
2r). Equivalently, we can write the data above as a map

- equips the geometric isotypic part fX Nilp L, with a Hecke action by T'(V.])(—d;+

ac, ;0 TV (=d; +2r) — End(/X o Le).

One can also fix a point ¢! € C!(F,) and consider the Hecke operator with leg restricted to ¢! which is
Ty1 cr : Shvnip(Bung) — Sthilp(Bung) In this case, one can restrict the cohomological correspondence

cyr to eyr or € Corrpy, 10, (—d;)(Px, Px). Here, we define Hkg o1 := Hke 1 xor{c'}. Tt gives a map

acvjycho—: o’c1< d[> /){N‘1 ]Lo-—) i ]L0'~ (52)
ilp ilp

However, the data of (5.2) is completely contained in (5.1) as follows: Note that there is a map obtained
from (4, 4')-adjunction for i : {¢!} — CT

[c]] V;Cl — T(VH(2r).
Then we have ac , ;.o = ac ;0 © ([c'] @id).

5.1.2. Associativity. The Hecke action (5.1) enjoys associativity for composition of cohomological correspon-
dences.

Take I = {1,2---,r}. Given V; € Rep(G) and ¢y, € Corrayg i,y .10y, (—di) (Px K ke, Px K k¢) for i € I,
consider the cohomological correspondence arising from composition
Cyr =€y, OCy, O---0Cy,
for VI =R,c;V; and d; = Zie] d; whose definition is as follows: Note that for each ¢ € I there is a map
CorTpi,, ;) 1Cv, ( 4)(Px Wke, Px Wke) — Corrpyg, ICy, ( 4y (Px Rker, Px Wker).

Here the sheaf ICy, € Shv(HkGJ) is understood as ICyiyR..1v;R.-RKtriv € Shv(Hke ;) for trivX --- K V; K
- X triv € Rep(G’I ). Putting this together with the usual composition of cohomological correspondences,
we get a map

H Corrhug )10y, (—d) (Px R ke, Px Bke) — H Corrpyg 10y, (—d,) (Px B ker, Px B kcf)

=1 1=1
— CorerGEI,ICVI(—dI)(,PX &ECI,'PX &ECI)

In this case, we have

Acypyo = ey, 0 0 0 0y, o € HomO(F(VUI)<—d[ +2r)® /X . L., /X - L,)
ilp ilp
where the later is understood as the composition

ey, 0 © "0 Qey, 0 ¢ F(VUI)<_dI + 27"> ®/

L, = @, T(Vio)(—d; 4+ 2) © / L,
X,Nilp X,Nilp

id®a‘Vr r—1
ST (Vi) (—d; +2) @ / L,
X,Nilp

id®acv1
—_— Lo
X,Nilp

5.1.3. Commutator relation. When the cohomological correspondences ¢y, come from local special coho-
mological correspondences as defined in [LW25, Definition 4.39], the Hecke action (5.1) enjoys commutator
relations coming from the commutator relations in the local Plancherel algebra. By associativity, it is enough
to consider the case I = {1,2}. Assume each cy, comes from a local special cohomological correspondence
c%/ Moreover, assume [cl‘,l7 CIVQ] =h- clvl oV, for some local special cohomological correspondence cﬁ/l Qv We
use

Vigvs € COlTHKG 1) 10y, 4, (—di—dat2) (Px M ko, Px Kkc)
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to denote the corresponding global special cohomological correspondence. In this case, assuming [LW25,
Conjecture 4.45], we have

Aey, O ey, = Oey, O ey, = Goy, gy, © (U®1d) € HOmO(F(VLJ) QL (Va,o){(—d1 —da +4) ®/ L,, / L,)
X,Nilp X,Nilp
where U: T'(V1 ,) @ T'(Va,,) = IT'(VA ® V2),) is the cup product.

5.2. Isotypic part of special cycle classes I. From now on, assume that o € Loc‘z;mh( ) is a G-Weil
local system and the Hecke eigensheaf L, is equipped with a compatible Weil sheaf structure. We drop the
subscript V! in ¢y r and write ¢ = cy 1.

5.2.1. Fake special cycle classes. From the Hecke action (5.1), one can construct the fake special cycle class
2eo € HO(T(V))(—dp +2r))" = Hom (V) (~dr), ko)

defined as the element satisfying
saom) = tr{aca(m) o Frob, [ L) (5.3)
X,Nilp

for any m € HO(D'(VI)(—d; + 2r)). See (1.27) for an alternative but equivalent definition. Here, we are
assuming the trace written above is convergent. The ideal case is the following:

Assumption 5.1. The complex fX Nilp L, is perfect.

We will assume Assumption 5.1 until the end of §5.2. Under this assumption, the fake special cycle classes
admit the following interpretation via categorical trace: Consider the lax-commutative square

QLisse( CI_ QLISSG ch

=6 v Lo | / |-t (5.4)

QLisse(CT) —9 QLisse(C)
in which the natural transformation is defined as

_® c,o
77ac,03_®vgl<_d1>®/ ]Lo’#_@kcd@/ LU.
X,Nilp X ,Nilp

The natural transformation 7, , admits a Frobenius twist

i =@ Vi(—dp) ®/ L,
X, Nilp

Then one has a commutative diagram

—®a.,o0(id®Frob)
—— —Qku ® / L,.
X,Nilp

trquisse(cr) (= @ Vi (=dr), QLisse(C")) —— V/(~dr)
J/trQLisse(CI)(nz(zlc),a) J/Zr,a . (5.5)
trQLisse(CI)(ida QLisse(CI)) — = ko

Here, the horizontal maps are the most obvious isomorphisms. The left vertical map is induced by the
functoriality of categorical trace in Definition 2.2.

5.2.2. Fake versus real I. For a cohomological correspondence
S COHch,I,ICW{de)(PX Rker,Px Rkear)
and o € Locamh(k). On the one hand, one has the fake special cycle classes
Ze,o € Hom® (V! (—d;), kcr)
whenever it is well-defined. On the other hand, one has the geometric trace

tTSht,CI(C) € Homo(ll,!(ICvf |Shta,;)<—dl>vEcI)~

We would like to relate these two.
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The most natural way of doing this is to construct a map

o1 1V = 101 (ICyr shig ;) (5.6)
which only depends on the Hecke eigensheaf L, (in particular, independent of the G-variety X) and ask if
Reo = trsm,cf(c) 08,1 (5.7)

It turns out that one can achieve this under good assumptions.

In this subsection, we will achieve this under a stronger assumption compared to Assumption 5.1, which
is:
Assumption 5.2. The group G is split semisimple, and the object L, € Shvyip(Bung) is compact.

Remark 5.3. Note that since the functor f X Nilp Shvyip (Bung) — Vect preserves compact objects,
Assumption 5.1 is a consequence of Assumption 5.2.

Remark 5.4. By [GR25], Assumption 5.2 is true when G is semisimple and o € Locs(k) is (geometrically)
irreducible. Unfortunately, in our application §6, we are interested in the case G = GL,, x GL,,_1, which is
not semisimple. We will loosen Assumption 5.2 in §5.3.

Until the end of §5.2.2, we assume Assumption 5.2. In this case, there is a natural choice of &, ; which
we are going to explain now.
Note that the diagram (5.4) naturally factors as

QLisse(CT) 8V, (Zdi) QLisse(CT)
(—®Lg)®idl % J((_®]LU)®id
Shvnip (Bung) ® QLisse(CT) M>ShVNﬂp(Bung) ® QLisse(CT) - (5.8)
fX,an ®idJ/ % J{fX,Nilp ®id
QLisse(CT) ! QLisse(CT)

Here, the natural transformation 7, r is the natural map coming from the Hecke eigen-property of L :
Nt : — ® (Lo RV (—dr)) = — @ Ty1(_ayy (Lo Rker).
One easily checks that
Na.,c = MNe,Nilp © No,I- (59)

By Assumption 5.2, all vertical maps in (5.8) preserve compact objects. Therefore, by the formalism of
Definition 2.2, the diagram (5.8) induces a factorization of the diagram (5.5):

trQLisse(CI)(f ® V171<7d1>3 QLiSSG(CI)) = V(J'I<7d1>

J/trQLisse(C’I ) (77571,}) l&a,f
tI‘QLisse(CI) ((FI‘Ob Xid)! o TVI<7dI> y ShVNilp (BunG> @ QLiSSG(Cl)) IL:”: ZI,! (ICVI IShtG,1)<_dl> : (510)

J/ng,ll)\filp L‘rsm,cl (©)
trQLissc(Cﬂ) (lda QLiSSG(CI)) = ECI
Here, the upper commutative diagram can be taken as the definition of the map &, ;. The lower commutative

diagram is Theorem 4.9. By (5.9), we know that the outer square of (5.10) is the square in (5.5). This gives
the desired identity zc , = trgpe cr(c) 0 €01

5.2.3. Refinement. Note that I7,(ICyr |snts ;) = O unless the central characters of different components of
VI € Rep(G') add up to zero, which we assume in this section. In this case, all the constructions above
make sense after adding a superscript e € mp(Bung) = 71 (G), which means restricting to the connected
component Bung C Bung. This gives us refined notions including Hecke eigensheaf on the connected

component L¢ = La|Bung, cohomological correspondence

S COI’I‘er IC, 1 (—dr) (PX X ECI s PX X Ecl),

G,I’
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Hecke action on the geometric isotypic part

aé 5 = aee o =V} (—ds) @/ L¢ — Le,
X, Nilp X, Nilp
isotypic part map
o1V =1 (ICys [sue, ), (5.11)

the fake special cycle classes

2o Vi {=dr) = kot (5.12)
constructed from a¢ ,, and the identity

Ze o = trgne,cr(c) 0 &5 1 (5.13)

5.3. Isotypic part of special cycle classes II. In this section, we will generalize the technique in §5.2.2
to general split reductive groups G. Let Z(G) be the center of G and S = G/[G, G]. We have a natural map
on the Langlands dual groups S — G. Define Shvyiy (Bung) C Shvyip, (Bung) to be the direct summand
containing the constant sheaf kg, .. We have an obvious map f : Bung — Bung.

The main difference between this section and §5.2.2 is that we replace Assumption 5.2 by the following
which we assume throughout §5.3:

Assumption 5.5. The functor f*(—) ® L, : Shvyyiy (Bung) — Shvi, (Bung) preserves compact objects.
Remark 5.6. By [GR25], Assumption 5.5 is true whenever o € Locs(k) is (geometrically) irreducible.

5.3.1. Construction of the isotypic part. In this section, we are going to construct the map (5.6) for V! ¢
Rep(GY) and o € Loc‘gith(kz), which only depends on the choice of a Hecke eigensheaf L, € Shvyi, (Bung)
with a Weil sheaf structure compatible with that of o.

Consider the functor (—), : Rep(G') — Shv(Hkg ) defined by V! + VI. We explain the notation

as follows: Note that Hkg; = HASJEX*(S)I Hkgs g ,. When V7T admits a unique central character As,1 €
X*(S)!, we abuse the notation and denote V! = §71Vf|HkSASI in which lg; : Hks; — CT is the map
remembering only the legs. In the expression, the later V! is the local system V! € QLisse(C!) while the
former V is a sheaf V! € Shv(Hkg ;) C Shv(Hkg ;). The meaning of V,/ will be clear from the context.
In general, V! is a direct sum of representations with different central characters. We take the direct sum
of the construction above for each direct summand of V7.

When G is split reductive but not necessarily semisimple, it is necessary to make the refinement in §5.2.3.
We will fix e € mp(Bung) until the end of this section. We use € € my(Bung) to denote the image of e under
the map 7o(Bung) — 7o(Bung). From now on, without loss of generality, we always assume V7’ € Rep(G)
is irreducible with highest weight A; and central character As; = (As1, - ,Asr) € X*(S)I. Moreover, we
can assume

D Asi=0 (5.14)
iel
since otherwise Shtg », = @.
Consider the correspondence

- S
Bung xC! <1 Hkg; —5% Bung xCO7 .
Define
Ty : Shv(Bung xC') — Shv(Bung xC”)
by
Tyi(—) = Hsra(hg () @ V))

where V] € Shv(Hkg ;). This functor preserves the subcategory Shvyiy (Bung) ® QLisse(C?) and induces
a functor

Ty : Shviiy(Bung) ® QLisse(C') — Shviiy (Bung) @ QLisse(CT).
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We have a natural transformation

Shviy (Bung) ® QLisse(CT) *> Shvy,iy (Bung) @ QLlsse( )

(f*(*)®ch,)®idl / J(f )®id (5.15)

Shvnip (Bung) ® QLisse(CT) v, Shvyip (Bung) ® QLISSG(CI)

To define the natural transformation 7),, we consider the diagram

— —
Bung xC’ PELY Hkg z, SELTEN Bung xC’
fold J{fHk foid (5.16)

Bung XCI <7 Hks s, 1 4) Bung XCI

. Lo - . . . .
in which h g and h g ; are isomorphisms, the natural transformation 7, is defined as

(f*(5)®Ly) ®@id) o Tyx = (f xid)* (K s 11(h (=) ®V)) @ (Ly Rker)
=~ (f xid)* (R s, h5,0(-) @ (Ly RV))
= (f xid)* (R s, 0 5,0(-) @ B (Lo R ko) ©1Cy 1)
= (W5(f id)*ﬁs,ﬁg,ﬂ—) ® (Lo B ker) ®1Cy1)
~ W 1a(fi B Bs.ai hs(=) ® WLy Bker) ®1Cyr)
> ra(finc 5 1(=) © W 3Ly R kor) © 1Cy1)
= R 1a(W5((f % 1d)*(~) ® Ly B ko) @ ICy1)
= Tyr o0 ((f*(-) 8 L,) ®id)

Adding a Frobenius twist, we get a natural transformation
nY  ((f* (=) ® Ly) ®1d) o (Frob xid), o Tyyr — (Frob xid)y o Ty o ((f*(—) ® L,) ® id).

Since the vertical maps in (5.15) preserve compact objects by Assumption 5.5, by Definition 2.2, we get the
left vertical map of the following commutative diagram

trqisse(c) (Frob xid)y o Ty 1, Shviyy (Bung) ® QLisse(CT)) BN AN v

~ o

ltrQLisse(CI)(n((rl)) i ol . (5.17)
trquisse(c (Frob xid); o Ty 1, Shvy, (Bung) @ QLisse(C7)) “275 17,(ICy: Ishs, ;)

Here, the map &7 ; is defined such that the diagram above is commutative. We need to explain the
isomorphism

LT : trqpisse(cr) (Frob xid); o Ty1, Shviy (Bung) @ QLisse(CT)) & V). (5.18)
The inclusion B 3
L8 triv : Shvgiy(Bung) — Shv(Bung)
admits a continuous right adjoint
LS triv,R Shv(Bung) — Shviriv (Bung)

which is the composition of the Beilinson’s spectral projector tsr : ShV(BunS) — ShVNllp(Buns) and the
projection to the direct summand Shv, (Bun%) C Sthllp(BunS) The category Shvy, (Bun%) is self-dual
under the Verdier duality with unit

ug = LS,triV,R(A&*wBung) S SthriV(Bung)®2

and counit -
evg =1, 0 A{g : Shviyiy (Bun§)®? — Vect.
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Here Ag : Bun% — Bun§ x Bun§ is the diagonal map, and T', : Shv(Bun%) — Vect is the unique continuous
functor whose restriction to compact objects is I'. This is a particular case of the renormalized functor of
direct image, which is denoted f, in [AGK22c, §A.2.3].

The map LT™" is defined as

LT : trqrisse(cr) (Frob xid); o Ty1, Shvysiy (Bung) ® QLisse(C'))
= prQ,A(AS X id)!(FrObBun?g de)* o T(Vfﬁtriv)g (LS,trivLS,triv,RAS,*wBung X Ecl)
— Pry 4 (AS X ld)‘ (FrObBung de)* o T’(V”Xtriv){7 (AS,*wBung X ECI) . (519)

25,10 (Vy @ wsneg, )

)

ng,I,*(VaI‘Shtg)AS ;

Here, pr,, : Bung xC! — C! is the projection to the second coordinate, the second map uses the adjunction
LS trivtS,triv,R — id, the map lg : Shtg; — C7T is the map remembering only the legs. The map LT ig a
special case of the refined true local term map defined in [GV24, §4.11] in which the same map is denoted
by LTZfie.

Note that there is a natural map V! — 15717*(‘/‘7[\51]@ Asz) induced by (I% ;,1s,1,«)-adjunction, which
realizes V! as a direct summand of the later. One easily checks that the map (5.19) factors through V!
and defines the isomorphism (5.18). This explains the construction of the o-isotypic part Sor : Vi —
1 (ICy: |Sht"é’1)'

The o-isotypic part map &7 ; admits a less canonical but equivalent and simpler construction, which is
more convenient to use. Instead of considering the map f : Bung — Bung, one chooses a point ¢ € C(FF,)
and consider the map f. = (=)o f : Bung — [*/S] where (=), : Bung — [*/S] is taking stalk at ¢ € C.. In
this case, one replaces the diagram (5.16) by

N
Bung XOI L HkGQ\I L Bung XCI

lfcxid lfu,Hk lfcxid (5.20)

S,1

[1/S] x CT 9 [x/8] x CT 2514 [4/8] x ¢
where ¢y, (£0,¢") = (€ ® O(=Ag,1 - e, c!) € [¢/S] x C'. Define
Tovr =trg (- ® VI Shv([*/S]) ® QLisse(C!) — Shv([*/S]) ® QLisse(C?).

In this case, the diagram (5.15) can be composed with the upper square in the following diagram, and we
arrive at
T )

c,V,

Shv([*/S]) ® QLisse(C) —*% s Shv([+/5]) ® QLisse(C')

(-)zoia % |z

Shvisiy (Bung) ® QLisse(C!) —2— Shvyyy (Bun%) ® QLisse(C1) (5.21)

)
(f*(—)®1La)®idl / i(f*(—)@ﬂw)@id

Shvyi, (Bung) ® QLisse(C7) 2N Shvyilp (Bung) @ QLisse(C7)

Here, the natural transformation ns 3,0 1s the obvious one. We denote 7¢ , = 1, ong 5,0+ Since all the vertical
maps in (5.21) preserves compact objects, by the formalism of Definition 2.2, we arrive at a commutative
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square

trqrisse(c) ((Frob xid)y o T, 1, Shv([+/8]) @ QLisse(C”)) — X V]

ltrqusse(cl)(nffé?g) lid
trqrisse(c) ((Frob xid)y o Tyr, Shvisiy (Bung) @ QLisse(C)) S &SN v (5.22)

J{trQLisse(CI)(nc(fl)) i o

Serre
trqrisse(c) ((Frob xid) o Tyr, Shvi (Bung) ® QLisse(C)) = 1r/(ICy [sig, )
Here the definition of the top horizontal isomorphism LT™"¢ is similar to but simpler than (5.18). The
commutativity of the upper square follows from a routine generalization of [GV24, Theorem 0.4(b)(i)] to
cohomological correspondences with kernel. Therefore, the outer square of (5.22) gives a simpler definition
of the map §or: VUI — 111 (ICy: |Sht% 1)'

5.3.2. Restriction of special cycle classes to the isotypic part. Keep the same assumptions as in the previous
section. Suppose we are given an affine smooth G-variety X and a cohomological correspondence

¢ € Cortaig 10, (—dr)(Px Wker, Px Kker),

we can consider the restriction of the geometric Shtuka construction of special cohomological correspondence
trsne,cr (¢) : I (ICy 1 [shee ; (—dr)) = kcr along the isotypic part map &5 ; : VI — 11, (ICy: |shte, , ), which is
the composition

trgne,cr(c) 0 &5 r e VI—dr) = ke

Let us revisit its construction. Consider the diagram

cV( dr)

Shv([*/S]) ® QLisse(CT) Shv([x/S]) @ QLisse(CT)

(fZ(*)®JLf;)®idl / l(f( )BL;)®id
nc o

Shvyip(Bung) ® QLisse(CT) u>I>ShV1\mp(Bun(;) ® QLisse(CT) - (5.23)
fX,Ni]p,IJ/ % le,Nilp,I
QLisse(CT) id QLisse(CT)

Since all the vertical maps in the diagram above preserve compact objects, applying the formalism in Defi-
nition 2.2, we arrive at the left column of the commutative diagram

trQLisse(C'I)((FrOb Xid)! o Tc,VI( drys ShV([*/S]) ® QLISSQ(CI)) % Vo'I<_dI>

e
J/trQLmie(CI ne3) J or

trQLisse(CI)((FrOb Xid)! ] TVI<_dI>, ShVNilp (BunG) (%9 QLiSSG(CI)) i: l] I(ICVI |Sht“ < d1>) (524)

|trassecen @) ltrsm,cm)
trQLisse(cr) (id, QLisse(CT)) = ko1
Define
Tee = 7e,Nilp © 775,0- (5.25)
This gives the identity
trsne,cr(c) 0 &5 = trQLisse(CI)(nge))' (5.26)

We give another description of the natural transformation 7.. Note that

[ ee)et) i 2r-e faPr e Lg) e i
X, Nilp, I
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We claim that the natural transformation 7. comes from a cohomological correspondence ¢, via the formal-

ism in §2.2.6 where
¢ € Corrpysyxcr,vi(—ap) (fe ) (Px @ Ly) Kker, fer(Px @ Ly) K ker) (5.27)
= Hom"(V;/ (—dy) @ £} , (fer(Px ® LE) Kker), for(Px @ L) Rker) '

constructed as:

, -
Vi =dp) @15, (fer(Px @ LE) Rkor) = 85, (fo x id)(Px @ b (b Ly Rker) @ 1Cy:(—dr)))

)

- —
= tksz(fc X ld lh[!( (PX ngcl) (29 h}(Lg IXECI) ®ICVI<—d1>)

I

> (f. x id) Ry (B 5 (Px B Eet) ® 15 (Lo R kor) © ICy1 (—dp))

= (fe xid)i( h[,!(ﬁl(PX Rker)@ICy1(—dr) @ (Ly Kkqr))
= fet(Px @ Ly) K ker
(5.28)

in which the last step uses the cohomological correspondence ¢ : %1,!(7?(77)( X kor) ® ICy(—dy)) —
PX & Ecl .

5.3.3. Fake versus real II. In this section, we would like to generalize the identity (5.13). We work under
the following assumption, which is weaker than Assumption 5.1:
Assumption 5.7. The complex fX Nilp L¢ is perfect.
In this case, we have the fake special cycle classes

2t VH=dr) = ko,

the special cycle classes
trsne,c1(€) : I (ICy 1 shee , (—dr)) = ke,
and the isotypic part map
g;l : VOI — l]7!(ICVI |S}1t€c,1)'

The main result in this subsection is the following:

Proposition 5.8. Assuming Assumption 5.7 and Assumption 5.5, we have z¢ , = trgpg cr(c) 0 &5 ;-

Proof of Proposition 5.8. The basic idea is to replace the axillary category Shv([x/S]) by Vect, and we will
get back to the situation in §5.2.2. As a naive tempt, we consider the diagram

—®V(—dr)

QLisse(CT) QLisse(CT)
pt®idl % lpt@id
Shv([+/S]) ® QLlsse(C'I) e 88 hy([+/S]) ® QLisse(CT) (5.29)
U 22 (0LE D@1 | | o002 ()L 010
.ﬂcg
QLisse(CT) id QLisse(CT)

Where we use the map p. : [*/S] — *. Here, the lower square is the outer square of (5.23), the natural
transformation in the upper square is the obvious one.
Pretending that the functor p} preserves compact objects, one would hope for a commutative diagram

tI‘QLisse(C’I)(_ ® VO'I<_dI>7 QLiSSG(CI)) = VO'I<_dI>

trQLisae(cI)(”(l))J( J{id

trquise(cr) ((Frob xid)y o Ty vy (ayy, She([x/S]) © QLisse(C1)) X% vl (~dy)
trQLissc(C’I)(ncg )l ltrsm,cl (€)o&5
trQLisse(CI) (ld, QLiSSG(CI)) = ECI

(5.30)
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Since n¢e 0 1p, = Nac , we get the desired identity in Proposition 5.8. However, the functor p; does not
preserve compact objécts. We cannot directly apply the formalism in Definition 2.2.

We bypass this point by considering the category Shv([x/S])*"*, which is the renormalization of Shv([«/S])
such that constructible complexes are compact. There is a fully faithful embedding ren : Shv([x/S]) —
Shv([*/S]**") preserving compact objects. We refer to [AGK™22¢, §F.5] for a thorough introduction to this
renormalized category.

One can bypass the problem by considering the diagram

—@VI(—ds)

QLisse(CT) QLisse(CT)
Py ®idJ, % J{p; ®id
Shv(#/8)™" @ QLisse(CT) Y28 8hv (x/5)™*" @ QLisse(CT)
rcn®idT - Trcn@id (5.31)
Shv(x/S) ® QLisse(CT) M Shv(*/S) ® QLisse(CT)

(ot O(fZ(—)®IL§))®idl — l(fx,wp o(f2 (—)BLE))®id
QLisse(CT) id QLisse(CT)

in which all the natural transformations are the obvious ones. In this diagram, all vertical arrows preserve
compact objects. We can apply the formalism in Definition 2.2 to obtain the diagram

tquiseicn)(— © Vi (~di), Qisse(CT)) - VI (—di)
trQLisse(CI)(nI(i-) )J/ id
trqrisse(cn) (Frob xid)y o T, v1(_q,y, Shv(x/S)"" @ QLisse(C)) % VI{—dr)
trQLisse(cz)(nﬁiﬁ)T . id (5.32)
trQLisse(CI)((FrOb Xid)1 o Tc,VJ(—dz)zshV(*/S) X QLiSSG(CI)) # VUI<—d[>
trQL;sse(cI)(”g’: )J trgpne o1 (€)0&5 1
trQLisse(C'I) (1d7 QLiSSQ(CI)) = ECI

Here, the commutativity of the upper square follows from a direct generalization of [GV24, Theo-
rem 0.4(b)(i)] to cohomological correspondences with kernel. The commutativity of the middle square follows
from the same kind of generalization of [GV24, Proposition4.12]. The bottom square is the outer square of
(5.24).

By the commutativity of (5.32), we are reduced to show

1 — e
trQLisse(CI)(ngg)) © trQLisse(C’)(ngelr)l) To trQLisse(CI)(n;()?) = Zeor (533)

For this purpose, consider the strictly commutative diagram

QLisse(CT)
J{pj@id
Shv(x/S) ® QLisse(C1) X2 Shy(x/S) " @ QLisse(CT) : (5.34)

J/(IX,Nilp o(f&(—)®LE))®id

(Sxxitp O(f2 (-)®LY)) @id
QLisse(CT)
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Moreover, each category in the diagram is equipped with an endomorphism which has been specified in
(5.31), among which the only new natural transformation is

T, _
Shv(+/S)* ® QLisse(c!) Y7378 hv (/)" @ QLisse(c!)
(e oS ()01 )@ | — |Uxap otz Ie1s )01 (5.35)
QLisse(CT) id QLisse(CT)

such that Mee ;ren © Tlren = T)ce -

By Assumption 5.7, we know ([ Nitp 0fe (F)®LG) (K. /s)) € Vect is compact. Since ki, /g € Shv([x/S])*"
is a compact generator, we know all maps in (5.34) preserve compact objects. Therefore, it gives a commu-
tative diagram

trQLisse(Cﬂ) (7 @ Vs (7(11)7 QLisse(CI))

1
ltrQLisse(CI)O]Igr))
1
sse(CT) ("ﬁeg)

t .
trqLisse(ct) (Frob xid)y o Te y1(_a,y, Shv([+/S]) @ QLiSSE(Cf%"*> trgLisse(cm) (Frob xid)i o T, yr(_q,y, Shv([*/S])" @ QLisse(CT)) -

(1)
trQLisse(cl)(nff; )

trquisse(cr) (id, QLisse(CT))

(5.36)
Since we have 7ce ren © 1p, = Nag ,» We know
1 _
tI‘QLisse(CI) (7753)) © tI‘QLiSs.e(CI) (nlgégl) To trQLisse(CI) (77[()1))
1
= trQLissc(CI) (ngg),ren) ° trQLissc(CI) (77;(;1))
1
= trQLisse(CI) (771(15)(,)
=% 5
This concludes the proof of Proposition 5.8.
|

Remark 5.9. Suppose one replaces LT by LTS for all the horizontal maps in (5.32), we do not know
how to prove the commutativity of the top square.'® This is the reason that we use LT""® instead of LTS
even though the latter seems more natural in our setting.

5.4. Generically middle-dimensional case. In this section, we study the case d; = 0 and V! € Rep(éI )9,
which means that the cohomological correspondence is ¢ € CorerG’I’ICvl (Px Rker,Px K ker). In this
case, the geometric trace is trgn,cr(c) : {11 (ICy 1 |sheg ;) — Ecr. We develop a tool to study its restriction
to the isotypic part trgy ci(c) 0 &5 ;¢ VI = kor. In this section, we assume V' € Rep(GT)Y is irreducible
with highest weight A\; whose central character Ag ; € X.(S)! satisfies _,; As; = 0.

In this case, taking stalk at ¢! € C induces an injection

(=)er : Hom* (V) ki) = Hom® (V) 1 k).

o

iel

Therefore, we only need to understand the induced map on the stalk (trgu,cr(c) 0 &5 p)er VI, =k
Note that there is another natural map

trSht,CI<C3,CI) : VI — k.

o,ct

I

We now explain this map. Consider the restriction along ¢! — C? of the cohomological correspondence

(5.27) which is
¢ et € Corrpyspyr  (fer(Px @ Lg) Mker, fer(Px ® L) Wkei).

Since } ., .; As,s = 0, we know that the underlying correspondence of ¢¢ ; is the identity correspondence on

[*/S]. The geometric trace above is the map

trSht7CI(Ce ) : VO'I,CI =~ Fun([*/S(Fq)]) X VO'I,CI = FC(E[*/S(]Fq)]) X VO'I,CI — k

o,cl

13 might be possible to generalize the argument in [ACK22a, §6] and show that LTtue = L TSerre,
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in which we are using the identification Fun([x/S(F,)]) = k given by evaluation at the unique point.'* Note
that the trace construction makes sense since f.1(Px ® LS) is constructible by Assumption 5.5.

We have the following proposition:
Proposition 5.10. We have (trgpe,cr(¢) 0 €5 1)er = trgug,cr (¢S 1) € HomO(VUICI, k).

o,cl

Proof of Proposition 5.10. We first note that there is a commutative diagram

tr(Froby o(— ® V/ ), Shv([+/S))) =5 VI,

~ o,c
(R o650 (5.37)
tr(id, Vect) = k

in which that the local term map LT is defined by
LT : tr(Froby o(— @ V// ), Shv([%/S5])) & Te(Aj (Frob xid)(Ac k. /5 ® Vy 1))
2 Le(kpse,)) ® Voo
= Fun([+/S(F,)) © VL
=V

Here we use the map A, : [%/S] — [*/S] x [%/S], and we use the isomorphism Fun([*/S(F,)]) = k given by
evaluation at the unique point.
On the other hand, by restricting the outer square of (5.24) to ¢!, we have a commutative diagram

tr(Frobyo(— @ V! ), Shv([x/8])) 225 V!

o,ct
ltr(ﬁ%) cI) l(trsm,cz(c)&i,z)cl (5.38)
tr(id, Vect) = k

in which the local term map LT is defined by
LT"" : tr(Froby o(— ® V1), Shv([*/S])) 2 T4 (AL (Frob xid).(Ac.we/s) @ Vi 1))
= D (wp/s) © Voot
= Fun([+/S(F,)]) © VL,
=V

In which we are also using the isomorphism Fun([+/S(F,)]) = k given by evaluation at the unique point for
the last step. Indeed, the inverse of this map is the adjunction map k — I'(w},/s,)))-

By [AGK 224, Theorem 6.1.4], we know LT""¢ = LTS 1> Combining this with (5.37)(5.38), we obtain

1
(br5,01 (€) 0 €5 p)er = tr(n') ) = trge,cr (€5 o1)-

o,c

O
5.5. Diagonal cycles. In this section, we study the restriction of the diagonal cycle on the isotypic part.

5.5.1. Conjectural description. We take G = H x H, X = H\H x H, and 0 = (og,c*og) € Locgith(k) X
Locgith(k) where ¢ : H — H is the Cartan involution (same letter for the induced map ¢ : Locy — Locy).
The H-local system ¢*op is characterized by Vil oo = Vi,o for any irreducible Vi € Rep(H).'% In this case,

we take a Hecke eigensheaf L,,, € Shvyip(Bung) for 0. One can consider D(L,,,) € Shvyi, (Bung) which

14Note that this isomorphism is |S(Fq)| times the natural adjunction map I'¢ (E[*/S(]Fq)]) — k.

1E’S‘clﬁictly speaking, there is no tensor product — ® VUI ol involved in [AGK T 22a, Theorem 6.1.4]. However, it is easy to see
that this factor is innocuous and goes through the proof in loc.cit.

16Strictly speaking, we have Vy cx, = c*Vg . However, one has the natural isomorphism c*Vy = Vi given by the
Geometric Satake equivalence.
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is naturally a Hecke eigensheaf with eigenvalue ¢*o . Here, D : Shv(Bung). — Shv(Bung)oP is the Verdier
duality. We take

L, =L,, KD(L,,) € Shvnip(Bung).

Fix e € m(H) = mo(Bung). We use Bunf C Bungy and Bung C Bung to denote the corresponding
connected component. Define Sy = H/[H, H], then S = Sy x Sy. Consider irreducible representation
Vi € Rep(H") with highest weight \g ;. Take VI = V/ X VH € Rep(G'). Assume V}, has central character

)\SH,I—(/\SHM" ASHT)GX*(SH) and EzeI/\SH7 =
Define Ly, = L, [Bung, and Ly = Ly|pung,.- We have an isotypic part map

ol =8ou 1 @& oy 1" VH,UH Vi on = = V] — 1;,(ICy: |Sht2‘;71) = lH,I,!(ICv;I |Sht"H)I) ® lH,I,!(ICv;} ‘Sht‘;ITI)
Take the diagonal cohomological correspondence
¢ = Apir[Hkp np, , /Bung xC'] € Corrpg ,1c,, (Px Rkor, Px Kker)
as in Theorem 3.3. We would like to understand the restriction of intersection pairing on the isotypic part
trsne, o () 0 €51 2 Vo — ke

Note that there is the natural evaluation map evyr V] =V} @Vl = kcr. It is natural to ask
H,op

about the relation between these two maps. The following is a conjectural answer:

Conjecture 5.11. We have trgy c1(c) o £ ; = tr(Frob, I'.(Lg , @ D(L,))) - evy

H,op

We need to explain the meaning of the number tr(Frob,I'.(L, ® D(Lg,))). When H is semisimple,
assuming Assumption 5.2, the complex T'.(Lg, ® D(Lg, )) is perfect, hence, the trace is a well-defined
number. When H is not semisimple, the vector space I'.(Lg, ® D(LL¢, )) is usually infinite-dimensional. In
this case, we assume Assumption 5.5, and the sum tr(Frob, ' (L, ® D(L¢, ))) will be convergent. In fact,
consider the map f. g : Bunyg — [*/Spy] and the diagonal map A, : [*/Sy] — [*/S]. Since the functor

/X “ o(fe(=) ®Lg) =Te(= @ Acyfe,m(Lg, ®D(LG,,))) : Shv([+/S]) — Vect

preserves compact objects, we know fe g 1(Lg, ® D(LLE ) € Shv([*/Sy]) is constructible. Note that
fem(Lg,, @ D(Lg )
is a constant sheaf. Indeed, consider the Cartesian diagram
[x/Z(H)] x Bung —™— Bungy
lidx ferr lfc H

[x/Z(H)] x [«/Su] —= [*/SH]

where m is induced by the closed embedding [*/Z(H)] C Bungg) and the natural action of Bunyg) on
Buny, m, is induced by the natural map [«/Z(H)] — [*/Sg] and the natural multiplication on [*/Sg]. By
base change and Hecke eigen-property of L, , one has

my ferm ) (Ly, @ D(Lg,)) = (d % fem)m*(Ly, @ D(Lg,)) = kpzeay B fe,m (L, @ D(LG,)).

This implies that fe zi(Lg, @ D(LG, )) is constant.
Therefore, consider the map i : x — [x/Sy], we have

Fe(Lg, ®D(LG,,)) = i* femi(Ly, ®D(LS,,)) ® Le([+/SH])
in which the first factor is a perfect complex. Therefore, we have
tr(Frob, To(L:, @ D(LE ) = tr(Frob,i* fo (LS, @ D(LE,))) - [Su(Fy)| ™, (5.39)

which is a well-defined number.
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5.5.2. Conjectural description of cohomological correspondence. By Proposition 5.10, to prove Conjecture
5.11, we only need to understand the cohomological correspondence

S COH[*/S},V;CI (Acyfe,m(Ly, @ D(Lg,)), Act fe,m (Lg,, @ D(Lg,,)))
whose general definition is given in §5.4. Note that there is another natural cohomological correspondence
evyy  ©id € Bom (V] ® Aoy oL, ©D(LE,)): Aufons(Ls,, ©DILS, )
= COH[*/S],VU{C, (Acpfem(Ly, @ D(LG ), Ac fe,mi(Ly, @ D(LS,,)))

in which evy s L VJICI = VBI{ ol ® Vé*UH o1 — k is the natural evaluation map. We have the following
H,op,c ) O H JOH,

conjecture:

Conjecture 5.12. We have ¢; , =evy:r  ®id.

H,op,c
Proof of Conjecture 5.11 assuming Conjecture 5.12. Note that
(tfsm}cl (C) o fi’I)CI = trsht’cl (C;CI)

= trSht701 (eVVI.II p ®ld)

yOHHC

=evyr  ®trgpeor(da,, s e, opEs,)

H,op,c .
=evyr @ tr(Frob,i" feui(L5, @ D(LG,,))) - 1Sk (Fy)|
JORC
= tr(Frob, [.(LLg,, @ D(L,,))) - evyz
H,aH,cI

Here, the first identity is Proposition 5.10, the second identity is Conjecture 5.12, the fourth identity follows

from [GV24, Corollary 0.9], the last identity follows from (5.39). Combined with the injectivity of (—).r :
Hom"(V}, ker) — Hom®(VE k), we get

trgne,cr(c) 0 & r = tr(Frob, Ie(Lg, @ D(LG,,))) - evyy

JOH

O

5.5.3. Ewvidence for Conjecture 5.12. In this section, we will prove Conjecture 5.12 under Assumption 5.13,
which we can verify in case H = GL,,. This provides evidence for Conjecture 5.12.

Recall that for each irreducible representation V}; € Rep(H) and V' = V}, ® V}, € Rep(G), we have the
diagonal cohomological correspondence vy, € Corrp, (11, 1Cy/ (Px W ke, Px B k~) which gives a map

Gey, o TVl @ Vipon )(2) @ / L L.
" X, Nilp X, Nilp
Putting all these maps for V}; € Trr(Rep(H)) together, one obtains a map
Qo - @ F(VI;JH ® VI,{,c*oH)<2> ®/ L, — L.
V/ €lrr(Rep(H)) X,Nilp X Nilp

Furthermore, one obtains an action map for the free tensor algebra
i D Wi, Vi@ [ Lo [ L.
VIfIGIrr(Rep(I:I)) A, Nilp X,Nilp
We make the following assumption:

Assumption 5.13. The following statements are true:

’

(1) For every ¢’ € m1(H), we have dim HO( [ Nilp Le) =1,
(2) The map
H@ (B Wiy @ Vien )0 B[ Lyom([ L)
X, Nilp X, Nilp

V/, €lrr(Rep(H))

is surjective.
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The main result in this section is the following:
Proposition 5.14. Under Assumption 5.13, Conjecture 5.12 is true; hence, Conjecture 5.11 is true.

Proof of Proposition 5.1/. Since the functor T'. : Shv([*/S]). — Vect is faithful, we only need to check that

Lo(cC 1) =evyr ®id € Hom®(V! , ®/ ]Li,/ Le).
’ ! ’ X,Nilp X,Nilp

H,op,c

Note that I'c(¢¢ ;) = af , , in which the later is defined in (5.2), we are reduced to show

¢.1,0
afcho =evyI , ®id € Hom‘)(V;C, ®/ L‘;,/ Le). (5.40)
- H,op,c X Nilp X Nilp

Since [ Nitp Lo = Te(Lg,, ® D(LG,,)), there is a canonical element
evie € HO(/ Le)* (5.41)
7 X,Nilp
defined as
evig - / L¢ 2 T,(LS, ®D(LE,)) = Tewpuns,) - k.
7 JX,Nilp

We have the following lemma:

€% — 0 e\ * Ix
Lemma 5.15. We have ac’y 5 evLe = evie ®evyr e €EH (fX7Nﬂp L) @V

Proof of Lemma 5.15. Note that evie ® evyr =evy , ,Le Where
7 H,O’H,CI VH’C' °H

eVTVII{,CI]LfTH S HOmO(TVI_IIVCILz.H X D(TVé,cILzerH)vaunH) =~ HOmO(Fc(TVé,CszH (24 D(Tvé’chgH)), k)

is the natural map. The claim follows from the following fact: For any F € Shv(Bung)., evaluating N, on
F X D(F) gives a natural map

Ne, (FRD(F)) : To(Tys o F @D(Tys 1 F)) = To(F @ D(F)).

This map satisfies n. , (F KID(F)) evr =evr,, ,r. O
c oc

By Lemma 5.15, and Assumption 5.13(1), we know

e olmo = (evy:
H

| ®id)|fo € Hom(Vg{cl ®HO(/

Lg),HO(/ L,)). (5.42)
X,Nilp X,Nilp

JOH »C
We have the following lemma:

Lemma 5.16. We have

Ger,0 °© a? = a? °© Qe 1,0 € HomO(VUI,CI ® ( @ F(VIIiﬂTH ® VI/J,C*UH)<2>)® ®/ ) ]LU’/ . LU)'
VAEIrr(Rep(FI)) X,Nilp X,Nilp

Here the composition is understood as in §5.1.2.

Proof. Note that we are in the situation of §5.1.3. Indeed, the cohomological correspondences involved
here all come from local special cohomological correspondences. Since the local Plancherel algebra has non-
negative degrees, [LW25, Assumption 4.46] is satisfied if the genus of the curve g(C') # 1. In this case, the
statement is true by the discussion in §5.1.3. One can easily remove the condition ¢g(C) # 1 since the leg is
fixed in one of the Hecke actions. |

Now, (5.40) follows from a combination of (5.42), Lemma 5.16, and Assumption 5.13(2). This concludes

the proof of Proposition 5.14 under Assumption 5.13.
|
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6. APPLICATION: HIGHER RANKIN—-SELBERG INTEGRALS

In this section, we work towards a proof of Theorem 1.7.

In §6.1, we review the construction of the o-isotypic part in the cohomology of Shtukas for G = GL,,.
In §6.2, we study the Rankin—Selberg cycle classes for G = GL,, x GL,,_1.

In §6.3, we study the diagonal cycle classes for G = GL,,.

In §6.4, we complete the proof of Theorem 1.7.

6.1. Isotypic part. We first define the o-isotypic part map (1.22) used in the formulation of Theorem 1.7.
They will be defined using techniques of §5.3.

For G = GL,, we have S = G/|G,G] = G,,. We use BundGLn C Bungy, to denote the connected
component consisting of vector bundles of degree d.

We fix a geometrically irreducible Weil local system o,, € Locarit:(k). There is an associated Hecke
eigensheaf LE®Y € Shvnip,(Bungr, ) constructed in [FGV02]. We refer to [LW25, §7.2] for a summary of its
properties and normalization (which is slightly different from the normalization in [FGV02] by a twist).

In this case, the construction in §5.3 makes sense. Indeed, consider the map f,, = det : Bungr,, — Bung,,.
The following proposition verifies Assumption 5.5.

Proposition 6.1. The functor
f:;(—) X LESV : ShVNilp (BunGm) — ShVNilp (BunGLn)
preserves compact objects.

The proof will be given in §6.1.1.
For each d € Z and V! € Rep(GLfl), the construction in §5.3 gives a map

).

d vl
on,l * Van — lLI(ICVI |ShtéLn,I

In particular, taking V! = Std$, for each € € {£1}}, we get a map

e = (60, Jaez = (&%, Dacz : 05 = [ [ 111(0Csqe
deZ

S, - (6.1)

Ly, I

In our application, we consider G = GL, x GL,,_;. For geometrically irreducible Weil local system

0= (0p,0n-1) € Loc?;r}filx aL,_, (k), we consider the functor

Jn X fn—1:Bungr, xqr,_, = Bungz, (6.2)
and use the Hecke eigensheaf
L, := LESV X ]LES_VI S ShVNHp(BunGLn % GLn—l)’

The same construction gives

Coe = (4% 0) g an_yeze (00 ® 0no1)E — H Ir1(IC(s¢d, ®Std, _1)e
(dnrdn—1)€EZ2

(dnrdpy—1) ) (63)

Shtgrp,,, « GL,, 1,1

This is an enhancement of the map (1.22) which recovers the map (1.22) by taking global section. The
injectivity of the map (1.22) is a consequence of Theorem 6.12.

6.1.1. Proof of Proposition 6.1. In this section, we prove Proposition 6.1. For an irreducible SL,,-local system
on € Locgy, (k), regarding it as a GL,-local system, the associated Hecke eigensheaf LY“Y descends to a
Hecke eigensheaf LES}’)GLW € Shvyip(Bunpgr,,). That is, consider the map h : Bungr, — Bunpgr,, we
have }LESV o h*Lgfi\léGLn.

We have the following lemma:
Lemma 6.2. For any irreducible SL,,-local system o, € Locgy, (k), the corresponding Hecke eigensheaf

F .
LUS,\P/’GLTL € Shvip (Bunpgr, ) s compact.
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Proof of Lemma 6.2. This is a direct consequence of [GR25]. To make our result minimally depend on
characteristic zero techniques, we provide an independent proof. Consider the map i,, : * — Locsr,
induced by the point o,, € Locgy,, (k). Since Lgﬁ\éGL" agrees with (i, k) * Pwnis up to a cohomological shift,
we only need to show that (iy, k) * Pwnit is compact. Here
Pwhit € ShV(BuanLn)
is the Whittaker sheaf and
* QCOh(LOCSLn) ® ShV(BuanLn) — ShVNilp (BUHPGLT,,)

is the spectral action. Since i,k is compact, Pwnit is compact, and — * — preserves compact objects, we
know that (i,, k) * Pwnit is compact. This concludes the proof of Lemma 6.2. g

Proof of Proposition 6.1. By tensoring with a rank 1 local system on C, we can assume deto, = k.. By
Theorem 4.1, compactness in Shv and Shvyiy, are the same, and we can safely discard the singular support
condition everywhere. Consider the commutative diagram

fn
Bung,, x Bungy, ——— Bungn, —— Bung,,

Jiven J»

pr
BunGm X BuanLn *2> BuanLn

in which m(L,&,) = &, ® L. Since for any F € Shv(Bungp,) one has m,m*F =2 mm*F =2 F ®
« Bung, Containing F as a direct summand, we know that the object F is compact whenever
m*F is compact. Therefore, we only need to check that

m* o (fi(—) @ LESY) = [n]*(—) R A*LESY oy, : Shv(Bung,,) — Shv(Bung,, x Bungt,, )

mIEBunGm

preserves compact objects. Here [n] : Bung,, — Bung,, is the n-th power map. This follows from Lemma 6.2

because both [n]* : Shv(Bung,, ) — Shv(Bung,,) and 2* : Shv(Bunpgr, ) — Shv(Bungy,, ) preserve compact
objects. |

6.2. Rankin—Selberg cycles. Now we come to study the Rankin-Selberg special cycle classes (1.4). In
particular, we would like to study their restriction along the map (6.3) using tools in §5.3.3.

In this section, we take G = GL,, x GL,,_1, H = GL,,_1, X = H\G. Define L =T'(0,, ® 0,,—1)(1), which
is an odd vector space. Let L€ = L9 ®---® L. Define M = L& L*. We have M®" = Gaee{:tl}““ LE. Define
(M®")o = D.err1y; Le € M. We would like to understand the elements

Jo&oe = ot 11[Shtgr, s |0 &%hY € L& (6.4)
defined in (1.15). Or slightly weaker, we would like to understand the element
((msne,r,1[Shtar, , seas Do)eez1yy € (M®7)5 (6.5)

whose components are defined in (1.16).
Take the cohomological correspondence

(WSth![ShtéLn,l,Stdi Do = 7TSht,I,![Shtzl;Ln,,l,Stdi

1 1

Cstds_, = WHk,L![HkGLn,l,Stdel /Bungr,, , xC']
€ (6.6)
COrrtiker, x 6,y 10C s, msea, el—r) (Px Wkor, Px Wker)
in Theorem 3.2. In this case, Assumption 2.36 is satisfied by Example 2.38. Therefore, Theorem 3.2 gives
the following:

Proposition 6.3. We have

).

TrSht,L![ShtGLn_l,Stdifl] = 'ETSht,CI(CStd§H

In particular, we have

(WSht,I,![ShtéLn,l,Stdi_l])a = trSht,CI(cStdifl) o 53’2@ € L.
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Since Assumption 5.1 is true by Theorem 6.6, we have the fake special cycle classes

G el (6.7)

Std -
n—

defined in (5.3) (see refinement in (5.12)). Note that Assumption 5.5 is true by Proposition 6.1, we can apply
Proposition 5.8 and get the following:

(d,d) _ (d,d)

.t . _ €%
Proposition 6.4. We have trSht,CI(CStd;hl) 0&s Zegat 0 € Lex.

-1
Combining Proposition 6.3 and Proposition 6.4, we are reduced to understand the fake special cycle classes
(.d) o € L&*. This is the subject of [LW25], where we recollect the key results below.

stat
Consider @)
chmiil’a = chs;diilﬁ € L§7*
deZ
and
for = D ey o € (MO C (MET), (6.8)
ec{+1};
By the definition in (5.3), these elements are defined by
Zor(M1 @ @m,) =tr(a®(m; ® - @m,) o Frob,/ L,) (6.9)
X,Nilp

in which the map a® is (6.13).

By Theorem 6.6, the sequence of elements {z, « } form a Kolyvagin system in the sense of [LW25, §3]. Note
that the (possibly infinite) sum above involves only finitely many non-zero terms since f X Nilp ]LESV’d =0
for all but finitely many d by Theorem 6.6. This confirms the first claim in Conjecture 1.6 in this setting.

Now we recollect some key properties of this Kolyvagin system. Let K = Std,, X Std,,—; @ Std}, K Std,

n—1-*
It is equipped with a natural symplectic pairing

WK = €Vstd, KStd,_; — €Vstd: KStd* (6.10)

n—1
in which evsia, ®sta,_, : (Std, X Std,,—1) ® (Std;, ®Std;_;) — k is the natural evaluation map and similarly
for evsgar mstaz - This gives rise to a symplectic pairing on the odd vector space M, which we denote by
wys. Note that symplecticity here means wys(my,ms2) = war(ma, my) since M is odd. The bilinear form wpy
induces bilinear form wys+ by identifying M* with M using wys. This induces a bilinear form w(per)+ on
(MErY*.
We have the following result:

Theorem 6.5. [LW25, Theorem 1.2] We have

(AN
W(mer)= (Za,ra ZO‘,T') = fBs (h’l Q) ()

L n n— . *—a
s=1/2 (0 ®U 1690-11@0-1'7, 1 S)

ds
where B, = (=127 Ol (Qxal b (Ve(0n ® 041) and
L(on @0y 1oy 05_y,8) =" VD6, @0, 1, 8)L0s @ 05y, 5)
is the normalized L-function defined in (1.18).

6.2.1. Geometric result. In this section, we collect all relevant geometric results relating to Rankin—Selberg
integrals for the convenience of readers. Take € = (1), (—1) in (6.6), we have cohomological correspondences

¢std, ; and cseax_ . They give rise to Hecke actions on fX7Nilp Lg,d’d) defined in (5.1)

esen 1,U:L@a/ L&D - L{d+1hd+D), (6.11)
" X, Nilp X, Nilp

Qg o L"® / L&D — L{d-1d=1), (6.12)
n-1 X,Nilp X,Nilp

Combining these two actions, we get an action

a®: M® — End(/ Ly). (6.13)
X,Nilp
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Let war x = (—1)"!wys.'"Define the Clifford algebra C1(M) to be the quotient of the tensor algebra M®
by the two-sided ideal generated by elements of the form my ® ma +mg @ m1 — war, x (M1, m2). We have the
following result:

Theorem 6.6. [LW25, Theorem 7.8] The action map (6.13) factors through the Clifford algebra Cl(M).
Moreover, we have

/ Lg = (Symd—i_n(n_l)(g_l) L) ® (Ldet 07171)9*"/2 ® (Ldet 07L)Q*("*1>/2<(n2 - 2)(9 - 1)>
X, Nilp

for each d € Z. Here, Laet o, , Ldet o, _, € Shv(Bung,, ) are the Hecke eigensheaves associated to the rank one
local systems det o,,,det o1

This theorem has the following corollary:

Corollary 6.7. We have
/ LD 2 (Lot o,y )2 © (Ldet o J-n-nr/2((n = 2)(g — 1))
X, Nilp

as a one-dimensional vector space with Frobenius action. Moreover, the action map (6.13) induces an

isomorphism
Sym'L@/ L;n(n—l)(g—l) g/ L,.
X,Nilp X,Nilp

Using the language of [LW25, §3.4], we have the following corollary:
Corollary 6.8. The CI(M)-module [y ;o
2.,—1n

lowest weight vector equal to q_"z(g_l)/ Xdet o, (Ql/z)x(}e’;ti (QY/2). Here, Xdet o, _ys Xdet o, © Pic(Fy) — kX
are the Hecke characters associated to local systems det o, _1,det o,,.

Lo is a lowest weight module with Frobenius eigenvalue on the

Remark 6.9. Dually, one has an isomorphism

Sym® L* ® / Lyn=1(o=1) o / Lo
X,Nilp X,Nilp

where
/ L2000 = det(T(0n © 0n-1)(1)) ® (Laeton_:)a-rn/z @ (Laet o, )12 ((n® = 2)(g — 1)).
X,Nilp

This implies that the C1(M) is a highest weight module with Frobenius eigenvalue on the highest weight
vector equal to ¢~ (9=1/2y " ()G EH QY ) e(0n @ 0n1)

deto,_1

We would also like to mention a relevant result, which will be used in the study of diagonal cycle in §6.3.
For any £ € Bung,, (F,), let Bungy, = {(Q""Y/2& £ C £)|€ € Bungr, } be the moduli stack of a rank
n vector bundle £ together with an injection of coherent sheaves Q("~1/2 @ £ c £. Consider the natural
forgetful map p~ : Bun/(an — Bungy, defined by p5(Q"1/2 @ £ c ) = £. Tt restricts to maps on
connected components p5? : Bun/cflfi — BunéLn.
Theorem 6.10. [Lys99] For any geometrically irreducible local systems o,,0!, € Locgr, (k), there is a
canonical isomorphism

~—

)

L,d,x FGV,d FGV.d
FC (pn (La'n ® ]LU;L

IR

Sym? (F(o © 07,)(2)(=2(dz = n(g = 1))) ® (Laet o, )2{~(9 — 1)) ® (Lates o7, )2 (~(9 — 1))
where dy = d —ndeg £ ® Q—1/2,

17The role of wpr and wyy, x are different here: The bilinear form wys (independent of X') is directly related to the intersection
pairing on the isotypic part. The bilinear form wys, x (dependent on X) arises from the Poisson structure on the Plancherel
algebra attached to X and controls the Kolyvagin system. The sign in the difference between these two forms can be traced
back to [LW25, Proposition 7.1].
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6.3. Diagonal cycles. We are now going to use techniques from §5.5 to study the diagonal cycle classes.
In this section, we take H = GL,, G = H x H, and X = H\G. For any V! € Rep(GL.)? and d € Z, we
would like to understand the diagonal cycle

(= =)V = Amr[Shtdy,, v /CT] € Hom (L1 (ICy 1 |gpee W))‘m, kor). (6.14)
That is, for any geometrically irreducible Weil local system o, € Locgitf(k), we want to understand its
restriction to the o,-isotypic part

<_a _>§i/1,0'n = AHk,U[ShtéLn,VI /CI} © (go'n,l ® fa;i,l)
= Ay, 1, [Shtar, vi /CT o ( gn,I ® 5%,1). (6.15)
€ Hom° (V] ® V;:,ECI)

Note that when V! = StdS, this element is (1.10).
For this, we take the diagonal cohomological correspondence defined in (3.4)

Cy1 € CorerG,I,IC Px Kkqr,Px &EC[). (6.16)

levl(

The result of Theorem 3.3 gives us

Proposition 6.11. We have
An,1,[Shtar, v /CT] = trgu, o ().
In particular, we have
(-, _>(\1/I,an = trgpe,cr(cyr) o (fg",f ® fg;,f)-

Since LEGV = D(]LESV), we can apply results in §5.5, in particular Conjecture 5.11. By Proposition 5.14,
we only need to verify Assumption 5.13. In our case, this is provided by Theorem 6.14. Therefore, we obtain
the following;:

Theorem 6.12. For everyd € Z and V! € Rep(GLfl), we have
trsne,cr (cyr) 0 (€5, 1 @ &0 1) = (Ing) - Resomy L(0y @ 0y, ) -evyr € Hom® (V) @ V. ki), (6.17)
Here evy: : VI @ VL — ker is the evaluation map.

The proof will be given in §6.3.2.
Combing Proposition 6.11 and Theorem 6.12, we obtain

Corollary 6.13. For any irreducible representation V! Rep(Gsz)@ and d € Z, the pairing
<7, 7>(‘i/170_n . Valn (4 VUI; — Ecl
s mon-degenerate.

In our application, we would like to take H = GL,, x GL,,_1. In this case, for each (d,,d,—1) € 72, we
study the diagonal cycle

dyydn_
(- *>§dn’dn71) = AHkJ»![Sht(GLn x Glgn_l,(smwmsmn_l)s /CI] (6.18)
dn7dn—1 .
€ Hom®((1,1(IC(std, ®std,, _1)e |(ShtGLn X)GLWLI))@)Q, kcr)

and the diagonal cohomological correspondence

C(Std,, ®Std,,_1)e

as well as the restriction of the intersection pairing to o-isotypic part
(= =) ptn=1) = (=, =) It o (¢, @ &oe ) € Hom® (0 @ 0 1) ® (07, ® 07_1)% k) (6.19)
). Then results similar to Proposition 6.11 and Theorem 6.12 hold

*

where 0 = (0y,,0,,-1) and 0* = (0,0} _;

with Theorem 6.12 replaced by

Ay
trht, 01 (€(Stdn RSty _p)e) © (E5dmdn=1) @ glinsdn-1)y
= (Inq)* - Res,—1 L(0y, ® 07, ) Resg—1 L(0p—1 ® 0511, 8) * €V (0, @00 _1)e (6.20)
€ Hom’((0, ® 00—1)* @ (0}, ® 07y _1) k)



SPECIAL CYCLE ON SHTUKAS AND CATEGORICAL TRACE 57

6.3.1. Geometric result. To apply Conjecture 5.11, we need to verify Assumption 5.13 to apply Proposition
5.14. We also need to compute the scalar tr(Frob, T(LESV-4 @ LESV-4)) involved in Conjecture 5.11. All of

these will follow from a description of I'.(LESY @ LESV) which we are going to give.
Take V' = Std,, € Rep(GL,,) and the diagonal cohomological correspondence ¢geq, ®std, ; We obtain a
Hecke action map introduced in §5.1.1

(Std,, BStd,,0,Bo : L(0n ® 05)(2) @ T (Lyo @ LESY) = T(LESY @ LgsY). (6.21)
Recall we have the canonical elements
evrava € HO(T(LEFY ! @ LoV )
defined in (5.41). We also have the fundamental class coev,, ([C]) € H(T'(0, ® 07)(2)).

The following result completely describes (LS @ LESY):

Theorem 6.14. For every d € Z, we have dim HO(D(LEGV-4 @ LESYV-%)) = 1, and the action map (6.21)
induces an isomorphism of graded vector spaces

H*(Sym®(D(0 ® JZ><2>))[m

Proof of Theorem 6.14. First note that both sides of (6.22) carry bi-gradings defined as follows: on the
right-hand side, we set

] - HOT(LESV! @ L V7) 5 HY (D(LESY @ LESY)).  (6.22)

deg H'(T(LESV* @ LpcV ) = (i,e).

On the left hand side, we have
deg H'(Sym®(T'(c, ® 01:)(2))) = (i, €).

We first prove the following:
Lemma 6.15. Both sides of (6.22) have the same bi-graded dimension.

Proof of lemma. This follows from [Lys0l, Main Global Theorem]. For the convenience of readers, we
reproduce the proof here.
For each d € Z, there exists a quasi-compact open substack j : U — BundGLn and an integer e € Z such

that

o LEGVid ig a clean extension from U C Bungyy, ;

e For any £ € U and £ € Pic with deg £ < e , we have H'(Hom(L ® Q~1/2 £)) = 0.
Take U,e as above. For any L as above, after restricting to U, the map p~¢ is the complementary of zero
section in a smooth vector bundle of rank H°(Hom(L ® Q"~1/2 £)) = d, —n(g—1). Therefore, we have a
fiber sequence of objects in Shv(U):

F = (0 ke )l (2(de = n(g = 1)) = ky. (6.23)
where F € Shv(U)S~(de=n9=1) " Applying the functor I',(LESV+4 ngv’d ® j1(—)) to this fiber sequence,
we obtain a fiber sequence

Le(j* (LT @Le )@ F) = To(pp (LT 0LV ) (2(de —n(g—1))) — Te(LeSV@Lss ) (6.24)
By Theorem 6.10, we have

Te(pp® (Lo @ Log™ ) (2(de — n(g 1)) = Sym® (T(on © 07,)(2)-
Therefore, the fiber sequence above is identified with
Lo (LY @ LosYY) @ F) — Sym™ ([0, @ 07)(2)) = Te(LECV 4 @ L2 V)
Since the functor T, : Shv(U) — Vect has bounded above cohomological dimension, by taking deg £ suffi-
ciently small, we can make the first term arbitrarily connective. This implies that for any i € Z, there are
isomorphisms
H'(Sym* (T (0, ©07,)(2))) & H' (LT @ Lo2" )

for sufficiently large k € Z. One easily sees that this implies that both sides of (6.22) have the same bi-graded
dimension. This ends the proof of the lemma. O
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In particular, we know that dim H%(I'o(LESV4 @ LEGV-4)y = 1.
When g(C) =1 and n > 1, such o, does not exist, and there is nothing to prove. When ¢(C) = 1 and
n = 1, one can verify the statement by hand. Therefore, we can assume g(C) # 1. In this case, by the proof
of Lemma 5.16, the action map (6.21) induces a map
QT e H(Sym* (Do, ©03)(2)) @ HY(TLESY @ LESY)) » H (T (LESY @ LESV)). (6.25)
This equips H*(Io(LESY @ LESV)) with a structure of H*(Sym*(I'(0, ® 07,)(2)))-module. We have the
following lemma: '

Lemma 6.16. The induced map

H*(Sym* (T (o © 07,)(2))) - HO(Te(LESV 4 @ Lge™ ) — H*(C(LESY @ LgEY)) (6.26)
is an injection. |
Proof of lemma. We claim that there exists another bi-graded action map

:T(0} ® 0,) @ TL(LEGY @ LESY) - T(LECY @ LEGY) (6.27)

Qegiax stz onBoy,
in which deg H(I'(0} ® 0,,)) = (i, —1) such that there exists a non-zero number x € k* satisfying

Qegea,, Bsedn onB0s; © Cespar mstaz 0n®oy — Qegpas Wseaz 0nBoy; © Cesia, Bsta, onloy = BV (0,007) ®id  (6.28)

as maps
D(0n ®03,)(2) ® (07, ® 0n) @ Te(Lpe ¥’ @ L) = Te(Lgy Y @ LEEY).

Here, the map evr(;,goz) : ['(0n ®05,)(2) @ I'(0, ® 0,) — k is the evaluation map of the duality induced by

cup product.

This is a particular case of the automorphic commutator relation [LW25, Corollary 6.12]. To explain this,
we will freely use notations in loc.cit. Consider the spherical variety X’ = A™ x %t» (GL,, x GL,,) where GL,,
acts on A™ via the standard action. Note that we have a closed embedding i : X = GL,, — X’ given by the
zero-section. This gives a functor ¢* : Shv(LX'/LtGxAut(D)) — Shv(LX/L*GxAut(D)) as Satg p-module
categories. Since i*0x/ = dx, this induces a map between Plancherel algebras PLx/  — PLx 5 as algebra
objects in Rep(GL,, x GL,,). By [BFGT21], there are canonical local special cohomological correspondences
for X’

i wsia, € Hom®(Std, ®Std,,, PLx/ 1)
and /
it msiq: € Hom®(Std), M Std;, (~2), PLx/ 1)
such that

X' X' _ X'
[¢Std,, ®std, > Cstds ® Std;] = wh- gy

for some k € k*. Here cﬁg\’,l € Hom"(triv, PL x.n) is the trivial cohomological correspondence. By composing
with the map PLx: 5 — PLx p, we get local cohomological correspondences for X
¢Seq, msea, € Hom®(Std,, ®Std,,, PLx 1)
and
Coas @sea; € Hom(Stdy, KIStdy, (~2), PLx »)
such that
1 1 1
[cstd,, M Std, CStdr X Std;] = Kh - Cyyy
Note that the local-to-global procedure in [LW25, §4.4] produces from cét 4, ¥sta, the diagonal cohomological

correspondence cs¢q, ®std, - 1 herefore, we can take csgq» msedx to be the globalization of CIStd* " sta- » and take
+ to be the induced Hecke action. The identity (6.28) follows from [LW25, Corollary 6.12].

a‘sm;; X sta¥ oMo
Now we prove the injectivity of the map in the lemma. Write

HT(o, @05)(2) =Fk-co
H™ (T (o, ©05,)(2)) = @k e

H™*(T(0n ® 07)(2) = k- coa
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where ¢y = coevy, ([C]). Assuming the contrary, suppose ch®f(c_11,c¢_1.2,---)c'5* - HOL(LESV4
ngv’d)) = 0 for some hg,h_o € Z>o and a polynomial f(c_11,c-192,---) € klc_1,1,¢-12,---]. Since
the action of H'(I'(0}, ® 0,,)) annihilates HO(I'o(LESV4 ngv’d)) for ¢ = 1,2 for degree reasons, we
can apply the relation (6.28) and get ¢l - HO(D(LESV @ ]ngv’d)) = 0. However, Lemma 5.15 implies
that (co - —)*QVLESV,d = evyrava— for all d € Z. Therefore, we have o - HO(T(LESVA L§§V7d)) =

n

HO(T (LEGV-dtho i LEGV-dthoyy £ 0, This gives a contradiction and proves the lemma.
O

During the proof above, one sees that
0wy, ([C]) - — : HOT(LESV & LEGV4)) 5 HO(T, (LESV 41  LEGV-+1))

This implies that the map (6.26) naturally extends to a map (6.22), which has to be an isomorphism since
both sides have the same bi-graded dimension. This concludes the proof of Theorem 6.14.
|

6.3.2. Proof of Theorem 6.12.

Proof of Theorem 6.12. By Theorem 6.14, Assumption 5.13 is satisfied. Therefore, Conjecture 5.11 is true
by Proposition 5.14. Let a1,- -+ ,aa,2(4—1)+2 be the Frobenius eigenvalues for H'(I'(0,, ® 07;)). Again by
Theorem 6.14, we know

tr(Frob, To(LE @ Lg;)) = tr(Frob, Sym® 7=~ 1(I'(0, ® 07)(2)))
n2 — —
IR0 - aug )
1—¢q!
n?(g— —s '
I V720 - aig ™)

(1—=g¢)1-¢'7*)
= (Ingq) Ress=1 L(oy, ® 0., 5)

= (Inq) Ress—1

This concludes the proof of Theorem 6.12 by Conjecture 5.11.

6.4. Computing intersection number. We are now ready to wrap up the proof.

Proof of Theorem 1.7. The first claim about the finiteness of non-zero terms has been addressed in §6.2. We
only need to prove the identity (1.17). Consider the pairing

(=, =) ldn) = 3" (= ) ddne1) € Hom"(M®7)g ® (M®"), k). (6.29)
ee{£1}]

By Proposition 6.3 and Proposition 6.4, the desired identity (1.17) translates to

(20,7, 2o ,r>g,i?’d"71)’*

- (6.30)

(d%) 3:1/2L(‘7n ®on-1 @0, @0, _1,8)

Resg—1 z(an ® ok, s) Ress—1 E(Jn,l ®0k_1,9)

qdim Bungr,, _, (ln q) —r—2

where z,, € (M®"){ is introduced in (6.8). We want to compare this with Theorem 6.5. For this purpose,
we first compare z,, € (M®")§ with z,+, € (M®")§. By comparing Corollary 6.8 and Remark 6.9 for o
and o*, we know that

2 _ _
e N (O Pereay (L)
Zox pr = Zo,r
T G (@G @), ) (6:31)

= Xdet O (Q)Xg(;lgn (Qe(on ® Jnfl)ilzcr,r
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Then we compare (A}M®7‘|(M®T)6®2 with (—, —)t(f,l?’d"’l). By combining Proposition 6.11 and Theorem 6.12

(with identity replaced by (6.20)), we get
<_7 _>z(7d,:7dn_1)
= (6.32)
(fl)r/2(ln 9)% - Resg—1 L(o, @ 07, 5) Resg—1 L(op_1 @ 071, 8)wpror ‘(M®T)?2
Here the sign (—1)T/ 2 arises from our definition of wys, which can be tracked back to the negative sign in
(6.10).'® By passing to the pairing on the dual space, one has
<_ _>(dnvdn71)7*

X - (6.33)
(1" (Inq)? - Res,—y L(, © 03, 5) Ress—y L(on—1 ® 0_p,8) 7" |arenyzen
Combining Theorem 6.5, (6.31), (6.33), we get
(2o,rs 2 ) S dn 1)
d\T 7 x x
¢ @D (Ilng) 2 (&) i1y B 1 OO B o1, 8)
Ress=1 L(0oy, ® 0%, 5) Ress=1 L(op—1 ® 01 _1,5)
Then the desired equality (6.30) follows from the equality above and
L(c, ® oy, 8) = q"z(g_l)sL(an ®o),s)
L(on1®0) 4.8) =q" V0 Lo, s @0% . 5)
dimBungy, , = (n —1)%(g — 1).
This concludes the proof of Theorem 1.7.
|
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