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Abstract. In this article, we relate the fake special cycle classes zLσ,r attached to a Hecke eigensheaf Lσ ∈
ShvNilp(BunG) introduced in [LW25] to the isotypic part of special cycles on Shtukas. As an application, we

relate the self-intersection number of the isotypic part of special cycles arising from Rankin–Selberg period
to higher derivatives of Rankin–Selberg L-functions.

Contents

1. Introduction 2
1.1. Main result: higher Rankin–Selberg integrals 2
1.2. Idea of proof of the main result 7
1.3. Main tool: Categorical trace interpretation of special cycle classes 10
1.4. Organization of the article 13
1.5. Notations and conventions 13
1.6. Acknowledgment 14
2. Preliminaries 15
2.1. Categorical trace 15
2.2. Cohomological correspondences with kernel 16
2.3. Relative compactification 26
3. Geometric trace and special cycle classes 29
3.1. General formalism in affine homogeneous case 29
3.2. Minuscule homogeneous special cycles classes 30
3.3. Diagonal cycle classes 30
4. Categorical trace and geometric trace 31
4.1. Recollections on geometric Langlands 31
4.2. Shtuka cohomology as a categorical trace 32
4.3. Duality of functors 32
4.4. Main result 36
4.5. Proof of main result 37
5. Isotypic part of special cycle classes 37
5.1. Isotypic part of geometric period 37
5.2. Isotypic part of special cycle classes I 39
5.3. Isotypic part of special cycle classes II 41
5.4. Generically middle-dimensional case 47
5.5. Diagonal cycles 48
6. Application: higher Rankin–Selberg integrals 52
6.1. Isotypic part 52
6.2. Rankin–Selberg cycles 53
6.3. Diagonal cycles 56
6.4. Computing intersection number 59
References 60

1



2 ZEYU WANG

1. Introduction

In [YZ17][YZ19], a higher Gross–Zagier formula is proved, which for certain types of cuspidal automorphic
representations π of PGL2 over the function field K(C) for some curve C over Fq, it relates the self-
intersection numbers of the π-isotypic part of the Heegner–Drinfeld cycles on the moduli of PGL2-Shtukas
with r-legs to the r-th derivative of the L-functions L(π, s) at the central point s = 1/2. This formula can
be regarded as a function field analog of the classical Gross–Zagier formula [GZ86] over the number field.

In [LW25], the authors proved a formula relating a certain norm of some “fake” special cycle classes
arising from Rankin–Selberg period to higher derivatives of Rankin–Selberg L-functions. More precisely, for
geometrically irreducible Weil local system σn, σn−1 on C of rank n, n − 1. Consider M = H1(CFq

, σn ⊗
σn−1)⊕H1(CFq

, σ∗n⊗ σ∗n−1), which is a vector space naturally equipped with a symmetric bilinear form ωM

arising from cup product. They defined some elements zLFGV
σ ,r ∈ (M⊗r)∗ arising from taking Hecke composed

with Frobenius trace of some Hecke operators on a geometric period integral, and proved a formula relating
ω(M⊗r)∗(zLFGV

σ ,r, zLFGV
σ ,r) with the r-th derivative of the Rankin–Selberg L-function L(σn ⊗ σn−1 ⊕ σ∗n ⊗

σ∗n−1, s) at the central value s = 1/2. See [LW25, Theorem1.1] for the precise formulation.
The formula proved in [LW25] was not about the intersection number of special cycles. Therefore, it

cannot be regarded as a direct higher-dimensional analog of the higher Gross–Zagier formulas. Also, the
fake special cycles considered in loc.cit are not seemingly natural from their definition. However, it was
claimed in loc.cit that these seemingly artificially defined objects are indeed related to special cycle classes
on Shtukas. The main subject of this article is to establish this relation. As an application, we prove a
formula (Theorem 1.7) relating self-intersection numbers of σ = σn ⊗ σn−1-isotypic part of special cycles on
GLn×GLn−1-Shtukas with higher derivatives of the Rankin–Selberg L-function L(σn⊗σn−1⊕σ∗n⊗σ∗n−1, s).
This formula can be regarded as a direct generalization of the higher Gross–Zagier formula.

Two features in our formula are different from the higher Gross–Zagier formula in [YZ17]: The first differ-
ence is in the spectral decomposition of the cohomology of Shtukas. In [YZ17], the spectral decomposition
was made using the action of Hecke operators on the cohomology of Shtukas, in which the σ-isotypic part
(actually, π-isotypic part for the automorphic representation π attached to σ) was the isotypic part for the
associated Hecke character of π. In this article, we directly construct a subspace of the cohomology of Shtukas
(rather than a complete spectral decomposition) and use it as our subspace of the σ-isotypic part. However,
the geometric Langlands conjecture for GLn should imply that our σ-isotypic part is indeed the σ-isotypic
part of the cohomology of Shtukas which can be defined using the (categorical) spectral action constructed
in [AGK+22c] and the categorical trace interpretation of cohomology of Shtukas proved in [AGK+22a].
Therefore, our definition of σ-isotypic part should be completely canonical. The second difference lies in
the definition of the isotypic part of special cycle classes and the intersection number. One significant dif-
ficulty in generalizing the work of [YZ17] to higher-dimensional cases is that the special cycles are rarely
compact in general, which makes defining the intersection number a challenge. In [YZ17], the special cycles
are compact, and one can directly take their self-intersection number. However, the special cycles are not
compact in our case, and we have to define the intersection number in an ad-hoc way. What we do is the
following: Although the special cycles are not compact, one can still talk about their intersection numbers
with compactly supported cohomology classes. Therefore, we regard these special cycles as functionals on
the σ-isotypic part of the (compact support) cohomology of Shtukas (which are finite-dimensional vector
spaces), on which the intersection pairing is non-degenerate. Therefore, we can define the “self-intersection
number” as the quadratic norm of these functionals under the dual of the intersection pairings. As far as we
know, the non-degeneracy of intersection pairings on the isotypic part, which plays an essential role in our
definition, was not previously known.

1.1. Main result: higher Rankin–Selberg integrals. In this section, we formulate our main result
on the intersection number of Rankin–Selberg cycles on Shtukas. Our main result is Theorem 1.7, which
confirms a version of Conjecture 1.6.

From §1.1.1 to §1.1.5, we introduce notations and backgrounds. In §1.1.6 and §1.1.7, we formulate the
main result.

Throughout the article, we fix a smooth projective geometrically connected curve C over Fq.

1.1.1. Moduli space of Shtukas. We first recall the definition of the moduli space of GLn-Shtukas.
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Fix a positive integer r ∈ Z≥0. Consider I = {1, 2, · · · , r}. Take {±1}r0 ⊂ {±1}r to be the subset
consisting of sequences ϵ = (ϵ1, · · · , ϵr) such that

∑r
i=1 ϵi = 0. For each ϵ ∈ {±1}r, we denote the moduli

space of (iterated) GLn-Shtukas with r-legs and modification type Stdϵn by ShtGLn,Std
ϵ
n
. It is is the moduli

stack such that for any Fq-scheme S, we have ShtGLn,Std
ϵ
n
(S) is the groupoid of tuples

((ci)i∈I , E0
ϵ1·c1− → E1

ϵ2·c2− → · · · ϵr·cr− → Er, α : E0 ∼= (idC × FrobS)
∗Er)

where:

• ci ∈ C(S) for i = 1, · · · , r;
• Ei is a vector bundle of rank n on C × S for i = 0, · · · , r;
• Ei−1

ϵi·ci−→ Ei is an isomorphism of vector bundles over C × S\Γci (Γci ⊂ C × S is the graph of the
map ci : S → C) such that

– If ϵi = 1, the inverse of the map induces an inclusion Ei ⊂ Ei−1 such that Ei−1/Ei is supported
on Γci on which it is locally-free of rank 1;

– If ϵi = −1, the map induces an inclusion Ei−1 ⊂ Ei such that Ei/Ei−1 is supported on Γci on
which it is locally-free of rank 1;

• α : E0 ∼= (idC × FrobS)
∗Er is an isomorphism of vector bundles. Here FrobS : S → S is the relative

Frobenius map over Fq.

The moduli space ShtGLn,Std
ϵ
n
turns out to be a Deligne-Mumford stack locally of finite type over CI . We

use lI : ShtGLn,Std
ϵ
n
→ CI to denote the natural map sending above data to (ci)i∈I . The moduli space

ShtGLn,Std
ϵ
n
is non-empty if and only if ϵ ∈ {±1}r0. We have dimShtGLn,Std

ϵ
n
= nr.

When ϵ ∈ {±1}r0, one has π0(ShtGLn,Std
ϵ
n
) ∼= Z where the isomorphism is given by taking the degree of E0

as a vector bundle over C. This gives a decomposition into connected components

ShtGLn,Std
ϵ
n
=

∐
d∈Z

ShtdGLn,Std
ϵ
n
. (1.1)

In our case, we are interested in the moduli space of GLn×GLn−1-Shtukas

ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ = ShtGLn,Std
ϵ
n
×CI ShtGLn−1,Std

ϵ
n−1

, (1.2)

whose decomposition into connected components is

ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ =
∐

(dn,dn−1)∈Z2

Sht
(dn,dn−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

(1.3)

in which
Sht

(dn,dn−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

= Shtdn

GLn,Std
ϵ
n
×CI Sht

dn−1

GLn−1,Std
ϵ
n−1

.

1.1.2. Rankin–Selberg cycles. The classical story of (everywhere unramified) Rankin–Selberg integrals (over
function fields) concerns the integration1 of f ∈ Func(BunGLn×GLn−1

(Fq)) (the vector space of Qℓ-valued
functions with compact support) over the diagonal map π(Fq) : BunGLn−1

(Fq) → BunGLn×GLn−1
(Fq) in

which the map BunGLn−1
→ BunGLn

is given by taking direct sum with the trivial line bundle. Or equiv-
alently speaking, one is interested in the function π(Fq)!1BunGLn−1

(Fq) ∈ Fun(BunGLn×GLn−1(Fq)) where

π(Fq)! is summation along fibers.
Note that BunGLn

(Fq) = ShtGLn,Std
ϵ
n
for r = 0. The principle of higher integrals is replacing the groupoid

BunG(Fq) by the moduli stack ShtG,I . In particular, in the Rankin–Selberg case, instead of considering
the characteristic function π(Fq)!1BunGLn−1

(Fq) ∈ Fun(BunGLn×GLn−1
(Fq)), one studies the Rankin–Selberg

cycle classes (or cohomological Rankin–Selberg cycles)

πSht,I,![ShtGLn−1,Std
ϵ
n−1

] ∈ HBM
2(n−1)r(ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ) (1.4)

where

• [ShtGLn−1,Std
ϵ
n−1

] ∈ HBM
2(n−1)r(ShtGLn−1,Std

ϵ
n−1

) is the fundamental class of ShtGLn−1,Std
ϵ
n−1

as a Borel-

Moore homology class;
• πSht,I : ShtGLn−1,Std

ϵ
n−1
→ ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ is the diagonal map which is taking direct

sum with the trivial vector bundle on the first factor. The map πSht,I is finite schematic by [Yun22].

1Since we are over function fields, integration here means summation.
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• πSht,I,! : H
BM
2(n−1)r(ShtGLn−1,Std

ϵ
n−1

) → HBM
2(n−1)r(ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ) is the push-forward

of Borel-Moore homology class along proper maps.

Here, we consider Borel-Moore homology with Qℓ-coefficient for stacks over Fq. For stacks defined over Fq,
if not otherwise specified, we always consider the Borel-Moore homology (or cohomology) of its base change
to Fq. In this introduction, we drop all the Tate twist.

1.1.3. Spectral decomposition of cohomology of Shtukas. In this article, by cohomology, we by default mean
cohomology with compact support in Qℓ-coefficient of stacks over Fq. The cohomology of Shtukas admits a
direct sum decomposition into isotypic parts for Langlands parameters.

To apply the machinery of geometric Langlands in positive characteristic, we need to pose the following
assumption on the characteristic of the base field:

Assumption 1.1 (Assumption on characteristic). Throughout the article, we keep the same assumption on
the characteristic of the base field as in [GR25, §0.1.9].

For each split reductive group G, we use Ǧ to denote the Langlands dual group. In [AGK+22c, §24.1],
the authors define a quasi-compact algebraic stack LocarithǦ over Qℓ (denoted LocSysarithmǦ (X) for X = C

in loc.cit) which is the moduli space of Ǧ-(Weil) local systems over C. This moduli stack has also been
considered in [Zhu21].

The ring of global sections Γ(LocarithǦ ,OLocarith
Ǧ

) is called the algebra of excursion operators. An equivalent

form of it was first considered by [GL18]. This algebra naturally acts on the cohomology of G-Shtukas. In
this formulation, the existence of this action is a consequence of [AGK+22a, Main Theorem0.3.10].

In our case, we get an action of Γ(LocarithGLn
,OLocarithGLn

) on Γc(ShtGLn,ϵ,Qℓ) for each ϵ ∈ {±1}r. It gives rise
to a direct sum decomposition

Γc(ShtGLn,ϵ,Qℓ) =
⊕

s∈π0(LocarithGLn
)

Γc(ShtGLn,ϵ,Qℓ)s (1.5)

where Γc(ShtGLn,ϵ,Qℓ)s is supported on the connected component of LocarithGLn
indexed by s.

For a Weil local system σn ∈ LocarithGLn
(Qℓ), we use LocarithǦ,σn

⊂ LocarithǦ to denote its underlying connected

component. We use Γc(ShtGLn,ϵ,Qℓ)Locarith
Ǧ,σn

to denote the corresponding term in the spectral decomposition

(1.5).

The action above extends to an action of H∗(LocarithGLn
,OLocarithGLn

) on
∏

d∈Z H
∗
c (Sht

d
GLn,ϵ,Qℓ). We use

(
∏
d∈Z

H∗c (Sht
d
GLn,ϵ,Qℓ))σn ⊂

∏
d∈Z

H∗c (Sht
d
GLn,ϵ,Qℓ) (1.6)

to denote the maximal sub-module (scheme theoretically) supported on σn ∈ Spec H0(LocarithGLn
,OLocarithGLn

).

For an irreducible Weil local system σn, this sub-module turns out to be a perfect complex, and it is what
we mean by the σn-isotypic part of the cohomology of Shtukas. Note that we are taking a direct product
instead of a direct sum here to avoid getting an empty sub-module.

We use σn to denote the base change of σn to Fq, which we call the underlying geometric local system of
σn. We say that σn is geometrically irreducible if σn is irreducible. If σn is geometrically irreducible, the
underlying connected component LocarithGLn,σn

is isomorphic to [Gm/Gm] in which Gm acts trivially. Here, the
first Gm can be regarded as the moduli of different Weil sheaf structures on the underlying geometric local
system σn. The second Gm is the moduli of automorphisms of σn. In this case, the isotypic part defined
above admits the following conjectural description:

Conjecture 1.2. For each ϵ ∈ {±1}r0, there is a canonical isomorphism

Γc(ShtGLn,ϵ,Qℓ)LocarithGLn,σn
[(n− 1)r] ∼= Γ(CI , σϵ

n)⊗O(Loc
arith
GLn,σn

)

where σ
ϵ
n = ⊠i∈Iσ

ϵi
n . In particular, it gives a canonical isomorphism

(
∏
d∈Z

H∗+(n−1)r
c (ShtdGLn,ϵ,Qℓ))σn

∼= H∗(CI , σϵ
n). (1.7)
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Remark 1.3. Conjecture 1.2 is a consequence of the geometric Langlands conjecture with restricted variation
for GLn in characteristic p formulated in [AGK+22c]. In particular, it is a consequence of [GR25].

Remark 1.4. While the isomorphism in Conjecture 1.2 is claimed to be canonical, there are several different
canonical choices indeed. Choice of such an isomorphism can be roughly thought of as a Shtuka analog of
the choice of a Hecke eigenform: one can choose it to be Whittaker normalized, L2-normalized... Whenever
using such an isomorphism, one should specify which isomorphism is being used.

For GLn×GLn−1-Shtukas, one can similarly define the action by excursion operators

H∗(LocarithGLn×GLn−1
,OLocarithGLn ×GLn−1

) = H∗(LocarithGLn
,OLocarithGLn

)⊗H∗(LocarithGLn−1
,OLocarithGLn−1

)

on ∏
(dn,dn−1)∈Z2

H∗c (Sht
(dn,dn−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ).

One can define the σ = (σn, σn−1) ∈ LocarithGLn×GLn−1
(Qℓ)-isotypic part

(
∏

(dn,dn−1)∈Z2

H∗c (Sht
(dn,dn−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))σ ⊂
∏

(dn,dn−1)∈Z2

H∗c (ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ ,Qℓ).

(1.8)

1.1.4. Intersection pairing. The cohomology of G-Shtukas carries an intersection pairing. When G = GLn,
we have the intersection pairing

⟨−,−⟩dϵ : Hnr
c (ShtdGLn,ϵ,Qℓ)⊗Hnr

c (ShtdGLn,ϵ,Qℓ)
∪−→ H2nr

c (ShtdGLn,ϵ,Qℓ) ∼= Qℓ (1.9)

induced by cup product and taking the degree of 0-cycles. The following concerns the behavior of the
intersection pairing on the σn-isotypic part (1.6):

Conjecture 1.5. For each d ∈ Z, ϵ ∈ {±1}r0, and irreducible Weil local system σn ∈ LocarithGLn
(Qℓ), the

restriction of the intersection pairing ⟨−,−⟩dϵ defines a non-degenerate bilinear form

⟨−,−⟩dϵ,σn
: (
∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))σn ⊗ (

∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))σ∗

n
→ Qℓ.

2 (1.10)

Given Conjecture 1.5, we can use the bilinear form ⟨−,−⟩dϵ,σn
to make an identification

(
∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))

∗
σ∗
n

∼= (
∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))σn

.

This gives a non-degenerate bilinear form

⟨−,−⟩d,∗ϵ,σn
: (
∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))

∗
σn
⊗ (

∏
e∈Z

Hnr
c (ShteGLn,ϵ,Qℓ))

∗
σ∗
n
→ Qℓ. (1.11)

For GLn×GLn−1-Shtukas and an irreducible Weil local system σ = (σn, σn−1) ∈ LocarithGLn×GLn−1
(Qℓ),

consider σ∗ = (σ∗n, σ
∗
n−1). One can similarly define a bilinear form

⟨−,−⟩(dn,dn−1),∗
ϵ,σ : (

∏
(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))
∗
σ⊗

(
∏

(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))
∗
σ∗ → Qℓ

. (1.12)

In this setting, we also expect Conjecture 1.5.

2Here we are studying the intersection pairing on ShtdGLn,ϵ which is concentrated in a single degree d on the σn-isotypic

part which spreads into all degrees (accounts for e ∈ Z).
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1.1.5. L-function of local system. For a Weil local system σ on C, its L-function is defined by

L(σ, s) = det(1− q−s Frob,Γ(C, σ))−1 =

2∏
i=0

det(1− q−s Frob, Hi(C, σ))(−1)
i−1

. (1.13)

The root number is defined by

ϵ(σ) = det(Frob,Γ(C, σ)(
1

2
))−1 =

2∏
i=0

det(q−1/2 Frob, Hi(C, σ))(−1)
i−1

. (1.14)

1.1.6. Statement of the main conjecture. Before stating our main result, we will first formulate a conjecture,
which will be confirmed by our main result under some assumptions that are satisfied in the most interesting
cases.

Borel-Moore homology can be naturally regarded as the dual of cohomology with compact support. In
our case, we have an isomorphism

HBM
2(n−1)r(ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ)

∼= H2(n−1)r
c (ShtGLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ ,Qℓ)

∗.

Therefore, one can view the special cycle classes (1.4) as functionals on the cohomology with compact support
and study its restriction on the σ-isotypic part (1.8). This gives

(πSht,I,![Sht
d
GLn−1,Std

ϵ
n−1

])σ ∈ (
∏

(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))
∗
σ. (1.15)

We have the following conjecture:

Conjecture 1.6. Assume σn, σn−1 are irreducible Weil local systems on C with rank n, n − 1. Take σ =

(σn, σn−1) ∈ LocarithGLn×GLn−1
(Qℓ). Then (πSht,I,![Sht

h
GLn−1,Std

ϵ
n−1

])σ is non-zero for finitely many h ∈ Z.
Take

(πSht,I,![ShtGLn−1,Std
ϵ
n−1

])σ =
∑
h∈Z

(πSht,I,![Sht
h
GLn−1,Std

ϵ
n−1

])σ

∈ (
∏

(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))
∗
σ.

(1.16)

For any (dn, dn−1) ∈ Z2, we have∑
ϵ∈{±1}r0

⟨(πSht,I,![ShtGLn−1,Std
ϵ
n−1

])σ, (πSht,I,![ShtGLn−1,Std
ϵ
n−1

])σ∗⟩(dn,dn−1),∗
ϵ,σ

= qdimBunGLn−1 (ln q)−r−2

(
d
ds

)r ∣∣∣
s=1/2

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s)

Ress=1 L̃(σn ⊗ σ∗n, s)Ress=1 L̃(σn−1 ⊗ σ∗n−1, s)

. (1.17)

Here dimBunGLn−1
= (n− 1)2(g − 1) where g is the genus of the curve C. The normalized L-functions are

defined as

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s) = q2n(n−1)(g−1)(s−1/2)L(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s) (1.18)

L̃(σn ⊗ σ∗n, s) = qn
2(g−1)sL(σn ⊗ σ∗n, s) (1.19)

L̃(σn−1 ⊗ σ∗n−1, s) = q(n−1)
2(g−1)sL(σn−1 ⊗ σ∗n−1, s). (1.20)

1.1.7. Statement of the main result. Our main result confirms a slightly different formulation of Conjecture
1.6 when σn, σn−1 are geometrically irreducible.

In this case, instead of working with the subspace

(
∏

(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ))σ

⊂∏
(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ)

(1.21)
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defined via the spectral action, we directly construct an injection

H∗ξσ,ϵ : H
r(CI , (σn ⊗ σn−1)

ϵ)→
∏

(en,en−1)∈Z2

H2(n−1)r
c (Sht

(en,en−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

,Qℓ). (1.22)

The image of H∗ξσ,ϵ should coincide with the subspace (1.21): While we will not show this in this article,
we believe it is an easy consequence of the geometric Langlands conjecture for GLn, in particular, the result
of [GR25]. Therefore, the map H∗ξσ,ϵ should give a choice of the isomorphism (1.7). The construction of
this map will be given in §6.1.

Throughout the article after this point, we will always use (1.22) as our σ-isotypic part. The meaning
of (1.15) and (1.12) will also be adapted to the isotypic part (1.22). We can formulate our main theorem,
which will be proved in §6.4:

Theorem 1.7. After replacing the subspace (1.21) by (1.22) and assuming

• σn, σn−1 are geometrically irreducible,
• p > n,

the Conjecture 1.5 and Conjecture 1.6 hold.

Remark 1.8. The first assumption is used for simplicity in constructing a Hecke eigensheaf. The second
assumption comes from Assumption 1.1.

1.2. Idea of proof of the main result. In this section, we explain the idea of proof of Theorem 1.7.
From now on, we take k = Qℓ. We work with a split reductive group G. To prove Theorem 1.7, we compute

explicitly all the terms on the left-hand side of (1.17) so that we can explicitly compare both sides. This

includes writing down explicitly the isotypic part of Rankin–Selberg cycle classes (πSht,I,![Sht
h
GLn−1,Std

ϵ
n−1

])σ

as well as the isotypic part of the intersection pairing ⟨−,−⟩(dn,dn−1),∗
ϵ,σ . These two elements can be uniformly

understood by taking categorical trace of the corresponding geometric relative Langlands statements in
[BZSV24].

1.2.1. Categorical trace. We first briefly explain the formalism of categorical trace. We refer to §2.1 for a
more precise explanation. For a dualizable presentable (∞, 1)-category C with an endomorphism F ∈ End(C),
its categorical trace is a space tr(F, C). Therefore, to understand a space S, one can try to find a pair (C, F )
such that S ∼= tr(F, C). This allows one to study the richer category C instead of the space S.

In our case, we would like to understand a morphism between spaces z : S1 → S2. This can be achieved
by the formalism of the functoriality of the categorical trace. Suppose we can write S1

∼= tr(F1, C1) and
S2
∼= tr(F2, C2). For each continuous (i.e. colimit preserving) functor L : C1 → C2 admitting a continuous

right adjoint, given a natural transformation η : L ◦ F1 → F2 ◦ L, there is an induced morphism between
spaces tr(η) : tr(F1, C1) → tr(F2, C2). Therefore, one could look for a natural transformation η such that
tr(η) = z, which changes the study of a map between spaces to the study of a natural transformation.

The discussion above also makes sense when working with categories linear over a symmetric monoidal
category A. In that case, one replaces the word “spaces” by “objects in A” and “functors” by “A-linear
functors”. We use trA(C) ∈ A to denote the (A-linear) categorical trace. See Example 2.4 for a more precise
treatment.

1.2.2. Fundamental diagram. In this section, we pretend that G is semisimple, which is unfortunately not
the case since we care about the case G = GLn. However, this would simplify the situation and is enough
for explaining the idea.

In our setting, we would like to understand the sequence of morphisms

V I
σ ⟨−dI⟩

ξσ,I−−→ lI,!(ICV I |ShtG,I
⟨−dI⟩)

[ZX
V I ]−−−→ kCI . (1.23)

Here,

• I is a finite set, V I ∈ Rep(ǦI), σ ∈ LocarithǦ (k) is a Langlands parameter, V I
σ is the local system on

CI involved in the Tannakian definition of σ, ⟨n⟩ = Π(n2 )[n] is the shearing. Here Π means changing
the parity, which can be safely ignored at this point. dI ∈ Z;
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• ShtG,I is the moduli of G-Shtukas with I-legs without bounding the poles. ICV I |ShtG,I
∈ Shv(ShtG,I)

is the sheaf attached by the geometric Satake equivalence. lI : ShtG,I → CI is the map remembering
only the legs. When G = GLn, V

I = Stdϵn, σ = σn, dI = r, we have Γc(lI,!(ICV I |ShtG,I
⟨−dI⟩)) =

Γc(ShtGLn,ϵ,Qℓ)⟨(n− 2)r⟩.
• kCI is the constant sheaf on CI ;
• ξσ,I : V I

σ → lI,!(ICV I |ShtG,I
) is the σ-isotypic part map. In GLn-case as above, ignoring the

difference between direct sum and direct product, we have H∗ξσ,I = H∗ξσn,ϵ : H∗(CI , σ
ϵ
n) →

H
∗+(n−1)r
c (ShtGLn,ϵ,Qℓ)((n− 1)r/2) which is the GLn-version of the map (1.22).

• [ZX
V I ] is a special cycle class attached to an affine smooth G-variety X. In this article, we are

particularly interested in two cases:
– Rankin–Selberg case: G = GLn×GLn−1, X = GLn−1 \GLn×GLn−1, V

I = (Stdn ⊠Stdn−1)
ϵ,

and

[ZX
V I ] = πSht,I,![ShtGLn−1,Std

ϵ
n−1

].

– Group case: G = GLn×GLn, X = GLn \GLn×GLn, V
I = (Stdn ⊠Stdn)

ϵ, and

[ZX
V I ] = ∆Sht,I,![ShtGLn,Std

ϵ
n
] = ⟨−,−⟩ϵ.

Here, ∆Sht,I : ShtGLn,Std
ϵ
n
→ ShtGLn×GLn,(Stdn ⊠ Stdn)ϵ is the diagonal map.

Following the principle in §1.2.1, we switch to understanding a sequence of functors between categories
with endomorphisms. We consider the following fundamental diagram:

QLisse(CI) ShvNilp(BunG)⊗QLisse(CI) QLisse(CI)

QLisse(CI) ShvNilp(BunG)⊗QLisse(CI) QLisse(CI)

(−⊗Lσ)⊗id

−⊗V I
σ ⟨−dI⟩

∫
X,Nilp,I

(Frob×id)!◦TV I⟨−dI⟩ id

(−⊗Lσ)⊗id

η(1)
σ

∫
X,Nilp,I

η
(1)

cX
V I

,Nilp

. (1.24)

This diagram contains a wealth of information. Let us explain it step by step. We first explain the
categories in (1.24):

• QLisse(CI) is the category of sheaves with lissé cohomologies on CI defined in [AGK+22c, Defini-
tion 1.2.6];

• ShvNilp(BunG) is the category of sheaves on BunG with nilpotent singular support. This is the main
player in the geometric Langlands with restricted variation [AGK+22c].

We then explain the functors between categories, which are horizontal maps in (1.24):

• Lσ ∈ ShvNilp(BunG) is a choice of Hecke eigensheaf with eigenvalue σ ∈ LocǦ(k). When G = GLn

and σ = σn is geometrically irreducible, such an eigensheaf is constructed in [FGV02].
•
∫
X,Nilp,I

= Γc(−⊗PX)⊗ id where PX ∈ Shv(BunG) is the period sheaf attached to the affine smooth

G-variety X as before. See [BZSV24, §10.3]. We are particularly interested in two cases:
– G = GLn×GLn−1, X = GLn−1 \GLn×GLn−1, PX = π!kBunGLn−1

where

π : BunGLn−1
→ BunGLn×GLn−1

.

– G = GLn×GLn, X = GLn \GLn×GLn, PX = ∆!kBunGLn
where

∆ : BunGLn
→ BunGLn×GLn

.

Now we come to the endomorphisms of categories which are vertical maps in (1.24):

• TV I : ShvNilp(BunG) ⊗ QLisse(CI) → ShvNilp(BunG) ⊗ QLisse(CI) is the Hecke operator attached

to V I ∈ Rep(ǦI).
• Frob : BunG → BunG is the (relative) Frobenius defined over Fq.

Finally, we explain the natural transformations in (1.24):

• The natural transformation η
(1)
σ comes from the Frobenius equivariant structure and Hecke eigen-

property of Lσ.
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• The natural transformation η
(1)

cX
V I ,Nilp

comes from a cohomological correspondence cXV I on the period

sheaf PX . The procedure of attaching such a natural transformation to a cohomological correspon-
dence will be explained in §2.2.6.

Pretending that the horizontal maps preserve compact objects, by the functoriality of categorical trace
applied to (1.24), we get the upper row in the diagram:

trQLisse(CI)(−⊗ V I
σ ⟨−dI⟩,QLisse(CI)) trQLisse(CI)((Frob×id)! ◦ TV I⟨−dI⟩,ShvNilp(BunG)⊗QLisse(CI)) trQLisse(CI)(id,QLisse(CI))

V I
σ ⟨−dI⟩ lI,!(ICV I |ShtG,I

⟨−dI⟩) kCI

trQLisse(CI )(η
(1)
σ )

∼

trQLisse(CI )(η
(1)

cX
V I

,Nilp
)

LTSerre∼ ∼

ξσ,I [ZX
V I ]

.

(1.25)
Note that the lower row of the diagram (1.25) is (1.23).

We first explain the vertical isomorphisms in (1.25):

• The left and right vertical isomorphisms follow from the most obvious computation of categorical
trace.

• The middle map LTSerre is defined in [AGK+22a, §5.4]. The fact that it is an isomorphism is the
main subject of [AGK+22a]. See §4.2 for a discussion.

We now explain the commutativity of the diagram (1.25):

• The commutativity of the left square defines the σ-isotypic part map ξσ,I : V I
σ → lI,!(ICV I |ShtG,I

).
• The commutativity of the right square will be illustrated in §1.3. In this article, we prove it under

Assumption 2.36.

Remark 1.9. In the discussion above, we pretend that the horizontal functors in (1.24) preserve compact
objects. While this is usually satisfied when G is semisimple and σ is irreducible, it mostly fails for non-
semisimple split reductive groups, which unfortunately includes the case G = GLn. In §5.3, we will discuss
a replacement of (1.24) for general split reductive groups.

1.2.3. Fake special cycle classes. Now we only need to understand the outer square of (1.25). For this, we

need to understand the natural transformation η
(1)

cX
V I ,Nilp

◦ η(1)σ for the outer square of (1.24), and we need

to understand how to compute trQLisse(CI)(η
(1)

cX
V I ,Nilp

◦ η(1)σ ). This is the study of fake special cycle classes,

which is the main subject of [LW25].
From the cohomological correspondence cXV I , one obtains a map

acX
V I ,σ

: V I
σ ⟨−dI⟩ ⊗

∫
X,Nilp

Lσ → kCI ⊗
∫
X,Nilp

Lσ. (1.26)

Under the assumption that horizontal maps in (1.24) preserve compact objects, the complex
∫
X,Nilp

Lσ is a

perfect complex. Therefore, one arrives at the fake special cycle class

zcX
V I ,σ

: V I
σ ⟨−dI⟩

id⊗coev∫
X,Nilp Lσ−−−−−−−−−−−→ V I

σ ⟨−dI⟩ ⊗
∫
X,Nilp

Lσ ⊗ (

∫
X,Nilp

Lσ)
∗

id⊗Frob⊗id−−−−−−−−→ V I
σ ⟨−dI⟩ ⊗

∫
X,Nilp

Lσ ⊗ (

∫
X,Nilp

Lσ)
∗

a
cX
V I

,σ
⊗id

−−−−−−−→ kCI ⊗
∫
X,Nilp

Lσ ⊗ (

∫
X,Nilp

Lσ)
∗

id⊗ev∫
X,Nilp Lσ−−−−−−−−−−→ kCI

. (1.27)

See (5.3) for an equivalent definition of zcX
V I ,σ

. These elements have been studied in [LW25, §1.1.5]. It turns
out that the composition of the top horizontal map in (1.25) coincides with zcX

V I ,σ
.

We are particularly interested in the following cases:

• When G = GLn×GLn−1, X = GLn−1 \GLn×GLn−1. The fake special cycle classes (1.27) are
understood via Theorem 6.5.
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• When G = GLn×GLn, X = GLn \GLn×GLn. The fake special cycle classes are described in
Theorem 6.12.

During the proof of results above, we heavily use the automorphic commutator relation developed in
[LW25, §4]. See §5.1.3 for a brief recollection.

1.3. Main tool: Categorical trace interpretation of special cycle classes. In this section, we explain
in more detail the right commutative square of (1.25). It turns out we can make sense of it and prove it in
two cases:

• Homogeneous minuscule case: G is split reductive, X = H\G for some spherical split reductive sub-
group H ⊂ G, V I ∈ Rep(ǦI) is irreducible minuscule, [ZX

V I ] = πSht,I,![ShtH,V I
H
] for some irreducible

minuscule representation V I
H ∈ Rep(ȞI). This includes all the cases we need in the proof of Theorem

1.7 and will be introduced in §1.3.1.
• Diagonal case: H is split reductive, G = H × H, X = H\H × H, V I = V I

H ⊠ V I
H ∈ Rep(ǦI) for

some irreducible representation V I
H ∈ Rep(ȞI). This case will be introduced in §1.3.2. This case in

general will not be used in the proof of Theorem 1.7, but we will use it to prove the non-degeneracy
of intersection pairing for GLn with arbitrary coweight in Corollary 6.13, which has its own interest.

1.3.1. Minuscule homogeneous special cycle classes. Consider a split connected reductive group G and a
spherical split connected reductive subgroup H. Take X = H\G. We choose maximal tori T ⊂ G and
TH ⊂ H such that TH ⊂ T . We use X∗(T ), X∗(TH) to denote the coweight lattices.

For the finite set I = {1, 2 · · · , r} and a sequence of minuscule coweights λH,I = (λH,1, · · · , λH,r) ∈
X∗(TH)I , we obtain a sequence of coweights λI = (λ1, · · · , λr) ∈ X∗(T )

I such that λi in the image of λH,i

under the natural map X∗(TH) ⊂ X∗(T ). Let VλI
∈ Rep(ǦI) be the irreducible representation with highest

weight λI . We use ShtG,λI
⊂ ShtG,I to denote the closed Schubert cell of type λI .

We define the minuscule homogeneous special cycle class

[ZX
V I ] = πSht,I,![ShtH,λH,I

/CI ] ∈ HBM
−dλI

+2dλH,I
(ShtG,I /C

I , ICV I |ShtG,I
)

in which

HBM
−dλI

+2dλH,I
(ShtG,λI

/CI , ICV I |ShtG,I
) = Hom0(lI,!(ICV I |ShtG,I

)⟨−dλI
+ 2dλH,I

⟩, kCI ).

Here,

• πSht,I : ShtH,λH,I
→ ShtG,λI

is finite and schematic by [Yun22].3

• [ShtH,λH,I
/CI ] ∈ HBM

2dλH,I
(ShtH,λH,I

/CI) ∼= HBM
2(dλH,I

+r)(ShtH,λH,I
) is the (relative) fundamental

class.
• lI : ShtG,λI

→ CI is the map remembering only the legs.
• dλH,I

=
∑r

i=1⟨2ρH , λH,i⟩ = dim(ShtH,λH,I
)− dim(CI), dλI

=
∑

i⟨2ρG, λi⟩.
We now explain the right square in (1.24). We first explain the Hecke operator TV I . Consider the

correspondence

BunG×CI HkG,I BunG×CI
←−
h I

−→
h I .

For V I ∈ Rep(ǦI)♡, via the geometric Satake equivalence, one obtains a (super) sheaf ICV I ∈ Shv(HkG,I)
normalized such that it is perverse on each fiber of HkG,I → CI with parity same as

∑
i∈I⟨2ρG, λi⟩. This

gives the Hecke operator

TV I =
−→
h I,∗(

←−
h !

I(−)⊗! ICV I ) ∼=
−→
h I,!(

←−
h ∗I(−)⊗ ICV I ) : Shv(BunG×CI)→ Shv(BunG×CI)

which preserves the full-subcategory ShvNilp(BunG)⊗QLisse(CI) ⊂ Shv(BunG×CI).

We now turn to the definition of the natural transformation η
(1)

cX
V I ,Nilp

= η
(1)
cλH,I

,Nilp via cohomological

correspondence. We leave it to §2.2 for notations and operations involving cohomological correspondences.

3In some part of this article, we write ShtG,λI
= ShtG,VλI

.
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Consider the diagram

BunH ×CI HkH,λH,I
BunH ×CI

BunG×CI HkG,λI
BunG×CI

π×id

←−
h H,I

−→
h H,I

πHk,I π×id
←−
h I

−→
h I

. (1.28)

We have the relative fundamental class of
←−
h H,I : HkH,λH,I

→ BunH ×CI which can be regarded as a
cohomological correspondence

[HkH,λH,I
/BunH ×CI ] ∈ CorrHkH,λH,I

,k⟨2dλH,I
⟩(kBunH ×CI , kBunH ×CI )

= HBM
2dλH,I

(HkH,λH,I
/BunH ×CI)

= Hom0(
−→
h ∗H,IkBunH ×CI ⟨2dλH,I

⟩,
←−
h !

H,IkBunH ×CI )

.

We apply the push-forward of cohomological correspondence in §2.2.2. Since that the right square of (1.28)
is pushable, given (π× id)!kBunH ×CI

∼= PX ⊠ kCI , one can define the minuscule homogeneous cohomological
correspondence

cλH,I
:= πHk,I,![HkH,λH,I

/BunH ×CI ] ∈ CorrHkG,λI
,k⟨2dλH,I

⟩(PX ⊠ kCI ,PX ⊠ kCI )

= Hom0(
−→
h ∗I(PX ⊠ kCI )⟨2dλH,I

⟩),
←−
h !

I(PX ⊠ kCI )

∼= Hom0(Tc∗VλI
⟨−dλI

+ 2dλH,I
⟩(PX ⊠ kCI ),PX ⊠ kCI )

where c∗ is the pull-back along the Cartan involution c : ǦI → ǦI .
Composing with the natural isomorphism Frob∗ PX

∼→ PX , one gets a cohomological correspondence

c
(1)
λH,I
∈ Hom0(

−→
h ∗I(Frob×id)∗(PX ⊠ kCI )⟨2dλH,I

⟩,
←−
h !

I(PX ⊠ kCI ))

∼= Hom0(Tc∗VλI
⟨−dλI

+ 2dλH,I
⟩ ◦ (Frob×id)∗(PX ⊠ kCI ),PX ⊠ kCI )

. (1.29)

By projection formula, we have natural isomorphisms

lI,!(TV I (−)⊗−) ∼= lI,!(−⊗ Tc∗V I (−))

and

lI,!(Frob
∗(−)⊗−) ∼= lI,!(−⊗ Frob!(−))

where lI : BunG×CI → CI . Since
∫
X,Nilp,I

= lI,!(−⊗ (PX ⊠ kCI )), the cohomological correspondence c
(1)
λH,I

gives us a natural transformation

η
(1)
cλH,I

,Nilp :

∫
X,Nilp,I

◦(Frob×id)! ◦ TVλI
⟨−dλI

+ 2dλH,I
⟩ →

∫
X,Nilp,I

.

The main result in this part is the following:

Theorem 1.10. Assuming Assumption 2.36, the right square of (1.25) is commutative for homogeneous
minuscule special cycle classes. That is, we have a commutative square

trQLisse(CI)((Frob×id)! ◦ TVλI
⟨−dλI

+ 2dλH,I
⟩,ShvNilp(BunG)⊗QLisse(CI)) trQLisse(CI)(id,QLisse(CI))

lI,!(ICV I |ShtG,I
)⟨−dλI

+ 2dλH,I
⟩ kCI

LTSerre∼

trQLisse(CI )(η
(1)
cλH,I

,Nilp)

∼
πSht,I,![ShtH,λH,I

/CI ]

(1.30)
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1.3.2. Diagonal cycle classes. When G = H×H andH ⊂ G is the diagonal embedding. TakeX = H\H×H.
In this section, we consider special cycle classes for possibly non-minuscule modification types. Note that the

construction of the natural transformation η
(1)
cλH,I

,Nilp from the cohomological correspondence cλH,I
makes

sense without assuming that λH,I is minuscule. Only when defining cλH,I
and [ZX

V I ], the steps involving
fundamental classes need a clarification.

The diagram (1.28) becomes

BunH ×CI HkH,λH,I
BunH ×CI

BunG×CI HkG,λI
BunG×CI

∆×id

←−
h H,I

−→
h H,I

∆Hk,I ∆×id
←−
h I

−→
h I

(1.31)

where ∆ : BunH → BunG is the diagonal map.
In this case, we consider relative fundamental class

[ShtH,λH,I
/CI ] ∈ HBM

0 (ShtH,λH,I
/CI , IC⊗2VλH,I

|ShtH,λH,I
) = Hom0(IC⊗2VλH,I

|ShtH,λH,I
, ωShtH,λH,I

/CI )

given by the canonical map

IC⊗2VλH,I
|ShtH,λH,I

∼= ICVλH,I
|ShtH,λH,I

⊗ DCI (ICVλH,I
|ShtH,λH,I

)→ ωShtH,λH,I
/CI .

Here we are using DCI := Hom(−, ωShtH,λH,I
/CI ) : Shv(ShtH,λH,I

)→ Shv(ShtH,λH,I
) to denote the (relative)

Verdier duality over CI and ωShtH,λH,I
/CI to denote the (relative) dualizing sheaf. A similar construction

gives the relative fundamental class

[HkH,λH,I
/BunH ×CI ] ∈ HBM

0 (HkH,λH,I
/BunH ×CI , IC⊗2VλH,I

).

We call cλH,I
= ∆Hk,I,![HkH,λH,I

/BunH ×CI ] the diagonal cohomological correspondence.
In this case, the element

⟨−,−⟩λH,I
:= ∆Sht,I,![ShtH,λH,I

/CI ] : (lH,I,!(ICVλH,I
|ShtH,λH,I

))⊗2 → kCI (1.32)

is called the diagonal cycle class and has a significant meaning: It is the intersection pairing on the compact
support cohomology of Shtukas. The functor

ev :=

∫
X,Nilp

: ShvNilp(BunG)
⊗2 → Vect

also has a significant meaning: It is the counit for the miraculous duality of ShvNilp(BunG).
We have the following parallel result of Theorem 1.10:

Theorem 1.11. The right square of (1.25) is commutative for diagonal special cycle classes. That is, we
have a commutative square

trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(BunG)⊗QLisse(CI)) trQLisse(CI)(id,QLisse(CI))

(lH,I,!(ICVλH,I
|ShtH,λH,I

))⊗2 kCI

LTSerre∼

trQLisse(CI )(η
(1)
cλH,I

,Nilp)

∼
⟨−,−⟩λH,I

(1.33)

1.3.3. Strategy of proof. The proof of Theorem 1.10 and Theorem 1.11 will be given in §4.5. One may think
Theorem 1.10 and Theorem 1.11 are purely formal consequences of the six-functor formalism given the deep
result of [AGK+22a]. While we do not regard them as deep results themselves, there are some seemingly
necessary and non-trivial ingredients involved in the proof.

We only explain the proof of Theorem 1.10 since the proof of Theorem 1.11 is similar after the development
of the theory of cohomological correspondences with kernels, which is the main subject of §2.2.

We prove Theorem 1.10 by establishing a two-step equality

trQLisse(CI)(η
(1)
cλH,I

,Nilp) = trSht,CI (cλH,I
) = πSht,I,![ShtH,λH,I

/CI ].
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Here, the element trSht,CI (cλH,I
) ∈ HBM

−dλI
+2dλH,I

(ShtG,λI
/CI , ICV I |ShtG,I

) is the geometric trace of the

cohomological correspondence c
(1)
λH,I

. The notion of geometric trace of cohomological correspondence 4 has

been widely used in literature. An incomplete list of its usage includes [FYZ23][YZ17][Var07][GV24]. It can
be regarded as a generalization of the sheaf-function correspondence, in which case the correspondence is
taken to be the Frobenius morphism.

The first equality follows from a direct diagram chasing and is completely formal given [AGK+22a]. Its
proof will be provided in §4.

The second equality is more subtle: It involves compatibility between the push-forward of cohomological
correspondence and the geometric trace construction. Its proof will be given in §3. Note that such com-
patibility is proved in [Var07][LZ22] for push-forward along proper maps. The problem here is that while
the map πSht,I : ShtH,λH,I

→ ShtG,λI
is proper, the map π : BunH → BunG (or more essentially the map

πHk,I : HkH,λH,I
→ HkG,λI

) is not proper. We remedy this by showing that the map π : BunH → BunG
(hence the map πHk,I : HkH,λH,I

→ HkG,λI
) admits a compactification such that the Hecke-Frobenius corre-

spondence is contracting along the boundary. The idea of studying contracting correspondence in the theory
of cohomological correspondence is not new: It appears in [Var07] and is also used in [GV24][FK24]. In these
articles, they show that pull-back of cohomological correspondence along contracting substacks is compatible
with the trace construction. In contrast, we show that push-forward of cohomological correspondence along
a map admitting contracting boundary is compatible with trace construction, which seems to be new as far
as the author knows. This is Theorem 2.27.

The “compactification” of π : BunH → BunG is a map π : Bun
X

G → BunG coming from the affine
degeneration of the spherical variety X = H\G. See §2.3 for a discussion. This is where the sphericity
of H ⊂ G and Assumption 2.36 are used. In the diagonal case G = H × H, this compactification is the
famous Drinfeld’s compactification ∆ : BunG → BunG×BunG coming from Vinberg’s semigroup. A proof
of that such construction gives a compactification (i.e., ∆ is proper when G is semisimple) is contained
in [FKM20, AppendixA]. For a general homogeneous spherical variety X = H\G, the existence of such a
compactification seems well-known to the experts, but we cannot find appropriate literature. We prove this
by simplifying and generalizing the argument in loc.cit, which also yields a shorter proof in the diagonal
case. This is Proposition 2.40.

1.4. Organization of the article. The organization of this article is as follows:

• In §2, we introduce the preliminaries for this article. In particular, we develop the theory of coho-
mological correspondence with a kernel that appears ubiquitously in this work.

• In §3, we prove the identity between the special cycle classes and the geometric trace of the coho-
mological correspondences.

• In §4, we prove the identity between the geometric trace of cohomological correspondences and the
classes obtained from the functoriality of categorical trace.

• In §5, we define the σ-isotypic part in the cohomology of Shtukas and develop general tools to study
the isotypic part of special cycle classes.

• In §6, we apply the machinery developed in the previous sections to the Rankin–Selberg case and
prove the main result, Theorem 1.7.

1.5. Notations and conventions. We now introduce the commonly used notations and conventions in
this article.

1.5.1. Category theory. In this article, by a vector space, we mean a super vector space. By a category, we
usually mean an (∞, 1)-category. We use Space to denote the ∞-category of spaces and Vect to indicate
the ∞-category of (super) vector spaces. For a category C with a t-structure, we use C♡ to denote its heart,
which is an abelian category.

For V ∈ Vect, we define V ⟨1⟩ = ΠV [1](1/2) where

• Π : Vect→ Vect is the functor changing the parity;
• [1] : Vect→ Vect is the shift functor;
• (1/2) is the Tate twist whenever it makes sense (e.g, when working with Frobenius equivariant vector

spaces).

4In literature, it is also called sheaf-cycle correspondence.
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For a category C and two objects x, y ∈ C, we use Hom(x, y) ∈ Space to denote the mapping space. We
define Hom0(x, y) = π0(Hom(x, y)) ∈ Vect.

We say a functor between two categories L : C → D is continuous if L preserves colimits.

1.5.2. Sheaf theory. In this article, we work with algebraic stacks, which are Artin stacks locally of finite
type over a field F . For a algebraic stack X over F , we use Shv(X) = Shv(XF ) to denote the category of

(ind-constructible) étale sheaves with k = Qℓ-coefficient as introduced in [AGK+22c, AppendixF]. We use
Shv(X)c ⊂ Shv(X) to denote the full subcategory of constructible sheaves.

1.5.3. Geometric notations. In this article, by a G-variety X, we mean a variety X with a right G-action.
We fix a smooth projective curve C over Fq. We use BunG = Map(C, [∗/G]) to denote the moduli space

of G-bundles over C. For a smooth affine G-variety X, we define BunXG := Map(C, [X/G]). It is equipped

with a map π : BunXG → BunG which is of finite type. We define the period sheaf to be PX := π!kBunX
G
.

We use I = {1, 2, · · · , r} to denote a finite set that serves as the index set of legs. We use HkG,I to denote
the (iterated) Hecke stack of G with I-legs, that is, the moduli space of tuples

((ci)i∈I , E0
c1→ E1

c2→ · · · cr→ Er)

where

• ci ∈ C for i ∈ I;

• Ei−1
ci→ Ei is a map between G-bundles on C − {ci} for i ∈ I.

It gives a correspondence

BunG×CI
←−
h I←−− HkG,I

−→
h I−−→ BunG×CI

where
←−
h I sends data above to (E0, (ci)i∈I) and

−→
h I sends data above to (Er, (ci)i∈I). We use lI : HkG,I → CI

to denote the map remembering the legs (sending data above to (ci)i∈I).

The geometric Satake equivalence attaches each V I ∈ Rep(ǦI) a sheaf ICV I ∈ Shv(HkIG), which is nor-
malized such that when V I = VλI

∈ Rep(ǦI)♡ which is irreducible with highest weight λI = (λ1, · · · , λr) ∈
X∗(T )

I , the sheaf ICV I is perverse, pure of weight 0, and has the same parity as
∑

i∈I⟨2ρ, λi⟩. We use HkG,λI

(or HkG,VλI
) to denote the support of ICV I (known as the closed Schubert cell). We use Hk◦G,λI

⊂ HkG,λI

to denote the open Schubert cell.
The Hecke operator attached to V I ∈ Rep(ǦI) is defined to be the functor

TV I =
−→
h I,∗(

←−
h !

I(−)⊗! ICV I ) ∼=
−→
h I,!(

←−
h ∗I(−)⊗ ICV I ) : Shv(BunG×CI)→ Shv(BunG×CI). (1.34)

We define the moduli space of G-Shtukas with I-legs to be the stack defined by the fiber product

ShtG,I HkG,I

BunG×CI BunG×BunG×CI

(
←−
h I ,Frob ◦

−→
h I ,lI)

∆BunG
×id

.

We still use lI : ShtG,I → CI to denote the map remembering the legs. We also have the obvious notion
ShtG,λI

⊂ ShtG,I (or ShtG,VλI
⊂ ShtG,I).

We have the moduli space HkXG,I by adding a rational X-section to the data of HkG,I that is regular for

each Ei. Similarly, we have moduli spaces ShtXG,I , HkXG,λI
, and ShtXG,λI

.

1.6. Acknowledgment. The author would like to express his sincere gratitude to his supervisor, Zhiwei
Yun, for his invaluable guidance, insightful feedback, and constant support throughout the writing process
of this article. This work would never have come out without his help. This work originates from the
collaborative work [LW25] of the author and Shurui Liu. The author would like to thank Shurui Liu for
many inspiring discussions, especially drawing the author’s attention to [AGK+22b, Corollary 3.3.7], which
is one of the starting points of this work. Also, the author would like to thank Tsao-Hsien Chen, Yiannis
Sakellaridis, Yakov Varshavsky, and Lingfei Yi for helpful discussions.
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2. Preliminaries

In this section, we introduce the preliminaries for the article.

• In §2.1, we recall the formalism of categorical trace.
• In §2.2, we develop the theory of cohomological correspondences with kernel.
• In §2.3, we explain the compactification of the map π : BunXG → BunG.

2.1. Categorical trace. In this section, we recall the formalism of categorical trace. We refer to [Zhu25,
§7.3] for a more detailed treatment.

In the following, by a category, we mean either 1-category, 2-category, (∞, 1)-category, or (∞, 2)-category.

Definition 2.1 (Categorical trace). Suppose (C,⊗, 1C) is a symmetric monoidal category. For each dual-
izable object x ∈ C and an endomorphism F ∈ EndC(x), we define the categorical trace of F to be the
element

tr(F, x) ∈ EndC(1C)

defined as the composition

1C x⊗ x∨ x⊗ x∨ 1C
ux F⊗id evx .

Here, x∨ is the dual of x, ux : 1C → x ⊗ x∨ and evx : x ⊗ x∨ → 1C are the unit and counit map for the
duality between x and x∨.

When C is a 2-category or (∞, 2)-category, the categorical trace admits the following functorial property.

Definition 2.2 (Functoriality of trace). Suppose (C,⊗, 1C) is a symmetric monoidal 2-category (or (∞, 2)-
category). For any objects x, y ∈ C and an adjoint pair of morphisms

x y
L

R
,

we use R∨ : x∨ → y∨ to denote the map dual to R given by

R∨ : x∨
id⊗uy−−−−→ x∨ ⊗ y ⊗ y∨

id⊗R⊗id−−−−−−→ x∨ ⊗ x⊗ y∨
evx⊗id−−−−−→ y∨.

Suppose we are given F ∈ EndC(x), G ∈ EndC(y), and a 2-morphism η : L ◦ F → G ◦ L, we define the
2-morphism

tr(η) : tr(F, x)→ tr(G, y)

to be the 2-morphism from the upper route to the lower route in the diagram

1C x⊗ x∨ x⊗ x∨ 1C

1C y ⊗ y∨ y ⊗ y∨ 1C

ux

id

F⊗id

L⊗R∨
γ

evx

L⊗R∨
η⊗id idδ

uy F⊗id evy

. (2.1)

Here the 2-morphism γ is defined as

γ : (L⊗R∨) ◦ ux = (L⊗ evx⊗id) ◦ (ux ⊗R⊗ id) ◦ uy ∼= ((L ◦R)⊗ id) ◦ uy → uy.

The 2-morphism δ is defined as

δ : evx → evx ◦((R ◦ L)⊗ id) ∼= evx ◦(R⊗ evy ⊗id) ◦ (uy ⊗ L⊗ id)) = evy ◦(L⊗R∨).

Example 2.3. Consider the symmetric monoidal (∞, 2)-category (PrL,⊗,Space) consisting of presentable

(∞, 1)-categories with continuous (i.e. colimit preserving) functors. Here Space ∈ PrL is the category of

spaces. The construction above assigns to each dualizable presentable (∞, 1)-category C ∈ PrL together
with a continuous functor F : C → C a space tr(F, C) ∈ EndPrL(Space) ∼= Space. Moreover, given another

D ∈ PrL equipped with a continuous functor G : D → D, suppose one has a continuous functor L : C → D
preserving compact objects (i.e. admits right adjoint R : D → C in PrL), for each natural transformation
η : L ◦ F → G ◦ L, one gets a map between spaces tr(η) : tr(F, C)→ tr(G,D).
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Example 2.4. For each algebra object (A,⊗) ∈ PrL (i.e. a presentable symmetric monoidal (∞, 1)-category
such that ⊗ is continuous), one can consider the (∞, 2)-category of linear categories over A defined as

LinCatA := LModA(Pr
L). This defines a symmetric monoidal (∞, 2)-category (LinCatA,⊗A,A). The

discussion in Example 2.3 carries over by requiring linearity over A everywhere, and we obtain trA(F, C) ∈
EndLinCatA(A) ∼= A and map trA(η) : trA(F, C)→ trA(G,D).

Example 2.5. Continuing with Example 2.4, suppose A is rigid. Then C ∈ LinCatA is dualizable if and
only if C is dualizable as an element in PrL. The most important cases for us are when A = Vectk for a field
k, and A = QLisse(CI) for a curve C over k and a finite set I. Here, the category QLisse(CI) is defined in
[AGK+22c, Definition 1.2.6].

2.2. Cohomological correspondences with kernel. In this section, we develop the theory of cohomo-
logical correspondences with kernel. In this section, by an algebraic stack, we mean an Artin stack locally
of finite type over a field F .

2.2.1. Definition. Consider a correspondence of algebraic stacks

A1
c1←− C

c0−→ A0.

Given K ∈ Shv(C).

Definition 2.6. For any F0 ∈ Shv(A0) and F1 ∈ Shv(A1), a cohomological correspondence between F0, F1

with kernel K is an element

c ∈ CorrC,K(F0,F1) := Hom0(c∗0F0 ⊗K, c!1F1).

Remark 2.7. When K = kC⟨−d⟩ for d ∈ Z, this is the usual notion of cohomological correspondence of
degree d.

2.2.2. Push-forward. Consider a map of correspondences

A1 C A0

B1 D B0

fA1

c1 c0

f fA0

d1 d0

. (2.2)

Suppose the right square of (2.2) is pushable (i.e., the map C → A0×B0 D is proper). Given Fi ∈ Shv(Ai)
for i = 0, 1, K ∈ Shv(C) and L ∈ Shv(D) together with a map α : f∗L → K, one can define the push-forward
of cohomological correspondence which is a map

f! : CorrC,K(F0,F1)→ CorrD,L(fA0,!F0, fA1,!F1)

defined such that for any c ∈ CorrC,K(F0,F1) = Hom0(c∗0F0 ⊗K, c!1F1), we have

f!c : d
∗
0fA0,!F0 ⊗ L → f!c

∗
0F0 ⊗ L

∼→ f!(c
∗
0F0 ⊗ f∗L)→ f!(c

∗
0F0 ⊗K)→ f!c

!
1F1 → d!1fA1,!F1.

Here, the first map uses the base change map for pushable square (see [FYZ23, §3.2]), the second map uses
projection formula for f , the third map uses α : f∗L → K, the fourth map uses the map c, the final map is
the Beck-Chevalley base change map for the left square of (2.2).

Example 2.8 (Push-forward Borel-Moore homology class). Consider the map of correspondences

S C S

S D S

id

c c

f id

d d

. (2.3)

The condition that the right square is pushable is equivalent to requiring f to be proper. Note that
CorrC,K(kS , kS) = HBM

0 (C/S,K) = Hom0(K, ωC/S) and a similar statement holds for D. The push-forward
of cohomological correspondence gives for each α : f∗L → K a map

f! : H
BM
0 (C/S,K)→ HBM

0 (D/S,L).
In particular, when K = kC , L = kD, and α is the natural map f∗kD → kC , this gives the usual proper
push-forward of Borel-Moore homology class.
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2.2.3. Pull-back. In this section, we switch to derived algebraic geometry and consider derived algebraic
stacks. For applications in this article, one can safely work within classical algebraic geometry and pretend
all the quasi-smooth maps involved are smooth. Consider the same diagram (2.2) but assume the left
square is pullable of defect d (i.e., the map C → A1 ×B1

D is quasi-smooth of relative dimension d). Given
Fi ∈ Shv(Bi) for i = 0, 1, K ∈ Shv(D) and L ∈ Shv(C) together with a map α : L⟨−2d⟩ → f∗K, one can
define the pull-back of cohomological correspondence which is a map

f∗ : CorrD,K(F0,F1)→ CorrC,L(f
∗
A0
F0, f

∗
A1
F1)

defined such that for any c ∈ CorrD,K(F0,F1) = Hom0(c∗0F0 ⊗K, c!1F1), we have

f∗c : (c∗0f
∗
A0
F0)⊗ L → f∗d∗0F0 ⊗ f∗K⟨2d⟩ ∼→ f∗(d∗0F0 ⊗K)⟨2d⟩ → f∗d!1F1⟨2d⟩ → c!1f

∗
A1
F1.

Here, the first maps uses α, the third map uses c, the last map uses the base change map f∗d!1⟨2d⟩ → c!1f
∗
A1

for pull-back square of defect d (see [FYZ23, §3.5]).

Example 2.9 (Pull-back of Borel-Moore homology class). Consider diagram (2.3). The condition that the
left square is pullable of defect d is equivalent to requiring f to be quasi-smooth of relative dimension d. The
pull-back of cohomological correspondence gives for each α : L⟨−2d⟩ → f∗K a map

f∗ : HBM
0 (D/S,K)→ HBM

0 (C/S,L).

When K = kD, L = kC⟨2d⟩, and α is the natural map kC → f∗kD, this gives the usual pull-back of
Borel-Moore homology class along a quasi-smooth map.

2.2.4. Specialization. In this section, we use η to denote the generic point of A1
F and s = 0 ∈ A1

F (F ). For
any algebraic stack A over A1

F , one has the nearby cycle functor Ψ : Shv(Aη)→ Shv(As).
Consider a cohomological correspondence over A1

F :

A1
c1←− C

c0−→ A0.

Given Fi ∈ Shv(Ai,η) for i = 0, 1, K ∈ Shv(Cη), L ∈ Shv(Cs) together with a morphism α : L → ΨK, one
can define the specialization of cohomological correspondence to be the map

Ψ : CorrCη,K(F0,F1)→ CorrCs,L(ΨF0,ΨF1)

defined such that for any c ∈ CorrCη,K(F0,F1) one has

Ψc : (c∗0,sΨF0)⊗ L → Ψ(c∗0,ηF0)⊗ΨK → Ψ(c∗0,ηF ⊗K)
Ψ(c)−−−→ Ψc!1,ηF1 → c!1,sΨF1.

Example 2.10 (Specialization of Borel-Moore homology class). Suppose the correspondence has the form

S
c←− C

c−→ S.

The construction above defines for each α : L → ΨK a map

Ψ : HBM
0 (Cη/Sη,K)→ HBM

0 (Cs/Ss,L),

which coincides with the usual specialization of Borel-Moore homology class when K = kCη
, L = kCs

, and
α : ΨkCη

→ kCs
is the natural map.

2.2.5. Geometric trace construction. In the following, we work with algebraic stacks over a base algebraic
stack S. For any such stack A, we define the category Shv(A)ULA ⊂ Shv(A) to be the full subcategory of
sheaves that are ULA over S. We use DS : Shv(A)ULA → Shv(A)opULA to denote the relative Verdier duality
functor.

Consider a self-correspondence between algebraic stacks (A
c1←− C

c0−→ A) with a kernel K ∈ Shv(C). Given
F ∈ Shv(A)ULA and a cohomological correspondence c ∈ CorrC,K(F ,F) = Hom0(c∗0F ⊗ K, c!1F). Consider
Cartesian diagram

Fix(C) C

A A×S A

p

i

(c1, c0)

∆

.
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Definition 2.11. We define the geometric trace of cohomological correspondence c to be the element

trS(c) ∈ HBM
0 (Fix(C)/S,K|Fix(C)) = Hom0(K|Fix(C), ωFix(C)/S)

given by the composition

K|Fix(C) = i∗K
i∗c−−→ i∗Hom(c∗0F , c!1F)
∼→ i∗(c1, c0)

!Hom(pr∗2 F ,pr!1 F)

→ p!∆∗(DS(F)⊠S F)
∼→ p!(DS(F)⊗F)

→ p!ωA/S

∼→ ωFix(C)/S

.

The third row uses isomorphism Hom(c∗0F , c!1F) ∼= (c1, c0)
!Hom(pr∗2 F ,pr!1 F), the fourth row uses base

change map i∗(c1 × c0)
! → p!∆∗ and the natural isomorphism Hom(pr∗2 F ,pr!1 F) ∼= DS(F)⊠S F , the sixth

line uses DS(F)⊗F → ωA/S .

Remark 2.12. When K = kC , the definition above coincides with the definition in [FYZ23, §4.1].

Remark 2.13. We call the above construction a geometric trace to distinguish it from the categorical trace
considered in other parts of the article. Note that the diagram (2.4) can not be obtained from the diagram
(2.1) by taking C = LinCatShv(S), x = Shv(A), and y = Shv(S) due to the failure of the categorical Künneth
formula. There are two ways to understand the geometric trace via categorical trace: It can be either
understood as a categorical trace in Lu–Zheng’s category, as in §2.2.10, or as a functoriality of categorical
trace in the geometric Langlands setting by putting a nilpotent singular support condition which remedies
the categorical Künneth formula.

2.2.6. Geometric trace as a natural transformation. Now we give another description of the geometric trace

trS(c) ∈ Hom0(K|Fix(C), ωFix(C)/S) ∼= Hom0(fFix(C),!K|Fix(C), kS).

Here we use fFix(C) : Fix(C) → S to denote the structural morphism of Fix(C). We use f : A → S (resp,
f2 : A×S A→ S) to denote the structural morphism of A (resp. A×S A).

Consider correspondence (A ×S A
c1×id←−−−− C ×S A

c0×id−−−−→ A ×S A) and the map pr1 : C ×S A → C which
is projection onto the first coordinate. We have the lax commutative diagram

Shv(S) Shv(A×S A) Shv(A×S A) Shv(S)

Shv(S) Shv(S) Shv(S) Shv(S)

∆!f
∗

id
γF

(c0×id)!(pr∗1 K⊗(c1×id)
∗(−))

f2,!(−⊗F⊠SDS(F))
ηc⊠id f2,!(−⊗F⊠SDS(F))

f!∆
∗

δF
id

id id id

(2.4)

We now explain the three natural transformations in (2.4):

• The natural transformation γF is defined by

γF : f2,!(∆!f
∗(−)⊗F ⊠S DS(F))

∼→ f2,!∆!(f
∗(−)⊗F ⊗ DS(F))→ f!(f

∗(−)⊗ ωA/S)
∼→ −⊗ f!f

!kS → id.

The first map is given by the projection formula for ∆, the second map is given by f2,!∆! = f! and
F ⊗ DS(F) → ωA/S , the third map is given by the projection formula for f , the final map is given

by the adjunction map for adjoint pair (f!, f
!).

• Consider the cohomological correspondence c⊠ id ∈ CorrC×SA,K⊠kA
(F ⊠ kA,F ⊠ kA). The natural

transformation ηc⊠id is given by

ηc⊠id : f2,!((c0 × id)!(pr
∗
1K ⊗ (c1 × id)∗(−))⊗F ⊠S DS(F))

∼→ f2,!(−⊗ c1,!(c
∗
0F ⊗K)⊠S DS(F))

→ f2,!(−⊗F ⊠S DS(F))
. (2.5)
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The first isomorphism comes from several applications of base change isomorphisms and projection
formula, the second map comes from the cohomological correspondence c : c1,!(c

∗
0F ⊗K)→ F . Note

that the middle square in (2.4) is induced from the following more primitive square:

Shv(A) Shv(A)

Shv(S) Shv(S)

f!(−⊗F)

c0,!(K⊗c∗1(−))

f!(−⊗F)
ηc

id

. (2.6)

• The natural transformation δF is given by

δF : f!∆
∗ ∼→ f2,!(−⊗∆!kA)→ f2,!(−⊗∆!(F ⊗! DS(F)))→ f2,!(−⊗F ⊠S DS(F)).

The first isomorphism uses the projection formula for ∆, the second map uses the map kA →
F ⊗! DS(F), the third map uses the adjunction map for adjoint pair (∆!,∆

!).

Note that after evaluating two routes from the left-top corner of (2.4) to the right-bottom corner of (2.4)
on the element kS ∈ Shv(S), we get a map

tr′S(c) : fFix(C),!K|Fix(C)
∼= f!∆

∗(c0 × id)!(pr
∗
1K ⊗ (c1 × id)∗∆!f

∗kS)→ kS . (2.7)

Lemma 2.14. We have tr′S(c) = trS(c) ∈ Hom0(fFix(C),!K|Fix(C), kS).

Proof. This is a routine diagram chase. We leave it to the reader. □

2.2.7. Geometric Shtuka construction. In this section, we assume the base field F = Fq.

Definition 2.15. For each correspondence c : (A
c1←− C

c0−→ A), we define its Frobenius twist to be the

correspondence c(1) : (A
c1←− C

Frob ◦c0−−−−−→ A). For each cohomological correspondence c ∈ CorrC,K(F ,F), we
define

c(1) ∈ CorrC,K(F ,F)
5 to be the element

c(1) : (c∗0 ◦ Frob
∗ F)⊗K ∼→ (c∗0F)⊗K

c−→ c!1F .

Consider Cartesian diagram

Sht(C) C

A A×S A

i

p (c1,Frob ◦c0)

∆

.

Note that Sht(C) is Fix(C) for the correspondence c(1). Therefore, the construction in the precious section
gives a map

trSht,S := trS ◦(−)(1) : CorrC,K(F ,F)→ HBM
0 (Sht(C)/S,K|Sht(C)).

2.2.8. Functoriality of geometric trace I. Now we formulate compatibilities of the geometric trace construc-
tion in §2.2.5 with proper push-forward, smooth pull-back, and specialization. We will leave their proof to
§2.2.10.

Theorem 2.16 (Compatibility with proper push-forward). Consider a morphism of correspondences between
algebraic stacks over S

A C A

B D B

fA

c1 c0

f fA

d1 d0

(2.8)

5Note that the two vector spaces CorrC,K(F ,F) appearing here are different: The first is defined using c and the second is

defined using c(1).
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in which fA, f are proper6 (hence the right square is pushable). Then the induced map Fix(f) : Fix(C) →
Fix(D) is proper. Given F ∈ Shv(A)ULA and K ∈ Shv(C), together with a map α : f∗L → K, the diagram

CorrC,K(F ,F) CorrD,L(fA,!F , fA,!F)

HBM
0 (Fix(C)/S,K|Fix(C)) HBM

0 (Fix(D)/S,L|Fix(D))

f!

trS trS

Fix(f)!

is commutative. Here the map Fix(f)! : H
BM
0 (Fix(C)/S,K|Fix(C)) → HBM

0 (Fix(D)/S,L|Fix(D)) is induced
from the map

Fix(α) : Fix(f)∗(L|Fix(D))
∼→ (f∗L)|Fix(C)

α|Fix(C)−−−−−→ K|Fix(C)

via Example 2.8.

Theorem 2.17 (Compatibility with smooth pull-back). Consider the diagram (2.8). Assume fA is smooth
and the left square is pullable of defect d. Then the induced map Fix(f) : Fix(C)→ Fix(D) is quasi-smooth
of relative dimension d. Given F ∈ Shv(B)ULA, K ∈ Shv(D), L ∈ Shv(C), and a map α : L⟨−2d⟩ → f∗K,
the diagram

CorrD,K(F ,F) CorrC,L(f
∗
AF , f∗AF)

HBM
0 (Fix(D)/S,K|Fix(D)) HBM

0 (Fix(C)/S,L|Fix(C))

f∗

trS trS

Fix(f)∗

is commutative. Here the map Fix(f)∗ : HBM
0 (Fix(D)/S,K|Fix(D)) → HBM

0 (Fix(C)/S,L|Fix(C)) is induced
from the map

Fix(α) : L|Fix(C)⟨−2d⟩
α|Fix(C)−−−−−→ (f∗K)|Fix(C)

∼→ Fix(f)∗(K|Fix(D))

via Example 2.9.

Recall we use η to denote the generic point of A1
F and s to denote the zero point of A1

F .

Theorem 2.18 (Compatibility with specialization). Consider an algebraic stack S over A1
F . Given a

correspondence between algebraic stacks over S:

A
c1←− C

c0−→ A,

together with sheaves F ∈ Shv(Aη)ULA, K ∈ Shv(Cη), L ∈ Shv(Cs), and a map α : L → ΨK, the diagram

CorrCη,K(F ,F) CorrCs,L(ΨF ,ΨF)

HBM
0 (Fix(Cη)/Sη,K|Fix(Cη)) HBM

0 (Fix(Cs)/Ss,L|Fix(Cs))

Ψ

trSη trSs

Ψ

is commutative. Here the map Ψ : HBM
0 (Fix(Cη)/Sη,K|Fix(Cη)) → HBM

0 (Fix(Cs)/Ss,L|Fix(Cs)) is induced
from the map

Fix(α) : L|Fix(Cs) → (ΨK)|Fix(Cs) → Ψ(K|Fix(Cη))

via Example 2.10.

Remark 2.19. Note that theorems above with constant kernel were proved in [Var07] and [LZ22] by slightly
different methods for schemes. The argument of [LZ22] can be easily generalized to Artin stacks (see [FK24]).
We will also prove these theorems by generalizing the argument of [LZ22].

6By a proper morphism between algebraic stacks, we mean a map representable in proper algebraic spaces.
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2.2.9. Functoriality of geometric trace II. Now we generalize Theorem 2.16 to the case that f admits com-
pactification with contracting boundary. The main result in this section is Theorem 2.27.

Our strategy follows [Var07][GV24][FK24], in which they prove compatibilities of geometric trace with
restriction to a closed substack on which the correspondence is contracting in different settings. As they did
in loc.cit, we use deformation to the normal cone, which has very simple behavior along a substack on which
the correspondence is contracting.

We begin with the definition of a correspondence contracting on a substack following [Var07, Defini-
tion 1.5.1] (in the scheme case) and [FK24, Definition 7.2.1] (for Artin stacks):

Definition 2.20. Consider a correspondence between algebraic stacks over S

c : (A
c1←− C

c0−→ A).

Let Z ⊂ A be a closed substack defined by an ideal sheaf IZ ⊂ OA.

• We say that c stabilizes Z if c∗0IZ ⊂ c∗1IZ .
• We say that c is contracting near Z if c∗0IZ ⊂ c∗1IZ and there exists n ∈ Z≥0 such that c∗0InZ ⊂ c∗1In+1

Z .

Example 2.21. Given a correspondence between algebraic stacks c = (A
c1←− C

c0−→ A) defined over S/Fq.

Then c(1) is contracting on Z if c stabilizes Z.

For Z stabilized by c, denote CZ := C×AZ in which we are using c1 : C → A. Consider the correspondence

DZ(A)
c̃1←− DCZ

(C)
c̃0−→ DZ(A)

where DZ(A) is the deformation to the normal cone of A along the closed substack Z and similarly for
DCZ

(C). This correspondence is defined over A1
S , whose fiber over any S-point of A1

S which is disjoint from

zero is identical to (A
c1←− C

c0−→ A), while the fiber over 0 ∈ A1
S is identified with

NZ(A)
N(c1)←−−−− NCZ

(C)
N(c0)−−−−→ NZ(A)

where NZ(A) is the normal cone of A along Z and similarly for NCZ
(C).

The following are some easy facts:

Lemma 2.22. Consider a correspondence c between algebraic stacks over S

A
c1←− C

c0−→ A

with a closed substack Z ⊂ A on which c is contracting. The following statements are true:

(1) The set-theoretic image of N(c0) : NCZ
(C)→ NZ(A) is contained in Z ⊂ NZ(A).

(2) The natural map defines an open and closed embedding Fix(CZ)red ⊂ Fix(C)red.
(3) The natural map defines an isomorphism Fix(NCZ

(C))red ∼= Fix(CZ)red.
(4) We have disjoint decomposition Fix(DCZ

(C))red = Fix(CZ)red ×S A1
S

∐
(Fix(C)red\Fix(CZ)red)×S

(A1
S\{0}).

Proof. (1) is [FK24, Lemma7.2.4]. (2) is [FK24, Proposition 7.5.4]. (3) is a consequence of (1). (4) is [FK24,
Proposition 7.5.5].7 □

In this case, we call the nearby cycle functors Ψ : Shv(A)→ Shv(NZ(A)) and Ψ : Shv(C)→ Shv(NCZ
(C))

specializations.
Note the following property of the Ψ:

Lemma 2.23. The natural transformation α : i∗Z,0 ◦Ψ→ i∗Z is an isomorphism. Here iZ,0 : Z → NZ(A) is
the zero section, iZ : Z → A is the natural inclusion.

Proof. This is [GV24, §7.5(b)]. □

The following is a direct consequence of Theorem 2.18:

7The formulation in loc.cit is not correct as stated. The proof in loc.cit shows what we state here.
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Proposition 2.24. Consider a correspondence c between algebraic stacks over S

A
c1←− C

c0−→ A

with a closed substack Z ⊂ A stabilized by c. For F ∈ Shv(A)ULA and K ∈ Shv(C), the diagram

CorrC,K(F ,F) CorrNCZ
(C),ΨK(ΨF ,ΨF)

HBM
0 (Fix(C)/S,KFix(C)) HBM

0 (Fix(NCZ
(C))/S, (ΨK)|Fix(NCZ

(C)))

Ψ

trS trS

Ψ

is commutative.

We have the following corollary which is generalization of [GV24, Corollary 5.6(c)]:

Corollary 2.25. In the setting of Proposition 2.24, assume moreover that c is contracting along Z. If
F|Z = 0, then the composition

CorrC,K(F ,F)
trS−−→ HBM

0 (Fix(C),K|Fix(C))
i∗CZ−−→ HBM

0 (Fix(CZ),K|Fix(CZ))

is zero. Here, the map iCZ
: Fix(CZ) ⊂ Fix(C) is an open and closed embedding on the reduced substacks by

Lemma 2.22(2) and i∗CZ
is the natural restriction map.

Proof. Applying Lemma 2.23 to CZ ⊂ C and using Lemma 2.22(3), we get a natural isomorphism

(ΨK)|Fix(NCZ
(C))
∼= K|Fix(CZ).

Under this isomorphism, one can check that the restriction map

i∗CZ
: HBM

0 (Fix(C)/S,K|Fix(C))→ HBM
0 (Fix(CZ)/S,K|Fix(CZ))

is identified with the map

Ψ : HBM
0 (Fix(C)/S,K|Fix(C))→ HBM

0 (Fix(NCZ
(C))/S, (ΨK)|Fix(NCZ

(C)))

used in Proposition 2.24. By Proposition 2.24, we are reduced to show that the composition

CorrC,K(F ,F)
Ψ−→ CorrNCZ

(C),ΨK(ΨF ,ΨF)
trS−−→ HBM

0 (Fix(NCZ
(C))/S, (ΨK)|Fix(NCZ

(C)))

is zero. Note that

CorrNCZ
(C),ΨK(ΨF ,ΨF) = Hom0(N(c0)

∗ΨF ⊗ΨK, N(c1)
!ΨF).

By Lemma 2.22(1) and Lemma 2.23, we know

N(c0)
∗ΨF ∼= N(c0)

∗iZ,0,!i
∗
Z,0ΨF ∼= N(c0)

∗iZ,0,!i
∗
ZF = 0.

This implies CorrNCZ
(C),ΨK(ΨF ,ΨF) = 0 and we are done. □

Definition 2.26. Consider a diagram of correspondences between algebraic stacks over S:

A C A

B D B

fA

c1 c0

f fA

d1 d0

.

• We say that f admits compactification with contracting boundary if the diagram can be extended to
a diagram

A C A

A C A

B D B

jA

c1 c0

j jA

fA

c1 c0

f fA

d1 d0

in which jA and j are open immersions, fA, f are proper, the two top squares are Cartesian, and there

exists an ideal sheaf IZ ⊂ OA defining a closed substack Z ⊂ A on which the middle correspondence
c is contracting and Zred = ∂A := A\A.
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• We say that f admits compactification if the condition above still holds except we only require Z to
be stabilized by c.

• For F ∈ Shv(A)ULA and a compactification as above, we say that F is good for the compactification
if jA,!F ∈ Shv(A)ULA.

Theorem 2.27. In the setting of Theorem 2.16 but only requiring that f admits compactification with con-
tracting boundary and F ∈ Shv(A)ULA is good for the the compactification, then the map Fix(f) : Fix(C)→
Fix(D) is proper, and the same conclusion holds.

Proof. The conclusion that Fix(f) is proper follows from Lemma 2.22(2). We can assume f∗L = K since
the general situation can be deduced from this case. Consider the diagram

CorrC,f∗L(F ,F) CorrC,f
∗L(jA,!F , jA,!F) CorrD,L(fA,!F , fA,!F)

HBM
0 (Fix(C)/S, f∗L|Fix(C)) HBM

0 (Fix(C)/S, f
∗L|Fix(C)) HBM

0 (Fix(D)/S,L|Fix(D))

j!

trS

f !

trS trS

Fix(j)! Fix(f)!

(2.9)

in which each horizontal map is induced by a push-forward of cohomological correspondence. We want
to show that the outer square of (2.9) is commutative. Theorem 2.16 implies that the right square is
commutative. Therefore, we only need to show the commutativity of the left square.

Define ∂C = C\C and i∂C : ∂C → C. Consider the diagram

CorrC,f∗L(F ,F) CorrC,f
∗L(jA,!F , jA,!F)

HBM
0 (Fix(C)/S, f∗L|Fix(C)) HBM

0 (Fix(C)/S, f
∗L|Fix(C)) HBM

0 (Fix(CZ)/S, f
∗L|Fix(CZ))

trS

j∗

trS

Fix(i∂C)∗Fix(j)∗

.

(2.10)
By Theorem 2.17, the left square of (2.10) is commutative. Note that the horizontal maps in the left square
of (2.9) are splittings of the horizontal maps in the left square of (2.10) and Fix(i∂C)

∗ ◦ Fix(j)! = 0 by
Lemma 2.22(2). Therefore, we are reduced to show Fix(i∂C)

∗ ◦ trS ◦j! = 0. This follows from Corollary 2.25
since (jA,!F)|∂A = 0. □

We have the following immediate corollary of Theorem 2.27 and Example 2.21:

Corollary 2.28. Consider a morphism of correspondences between algebraic stacks over S/Fq

A C A

B D B

fA

c1 c0

f fA

d1 d0

.

Assume f admits compactification and F ∈ Shv(A)ULA is good for the compactification. Then the induced
map Sht(f) : Sht(C) → Sht(D) is proper. Moreover, given F ∈ Shv(A)ULA and K ∈ Shv(C), together with
a map α : f∗L → K, we have a commutative diagram

CorrC,K(F ,F) CorrD,L(fA,!F , fA,!F)

HBM
0 (Sht(C)/S,K|Sht(C)) HBM

0 (Sht(D)/S,L|Sht(D))

f!

trSht,S trSht,S

Sht(f)!

.

2.2.10. Lu–Zheng category. In this section, we follow the strategy in [LZ22] to prove theorems in §2.2.8. We
consider variants of 2-categories considered in [LZ22] adapted to cohomological correspondences with kernel.
Note that similar construction is also made in [FK24].

Definition 2.29. Let S be an algebraic stack. We define the symmetric monoidal 2-category

(LZ(S)!,⊗, 1LZ(S)!)

as follows:
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• The objects are pairs (A,F) where A is an algebraic stack over S, and F ∈ Shv(A).

• A morphism from (A0,F0) to (A1,F1) is a triple (c,K, c) where c = (A1
c1←− C

c0−→ A0) is a corre-
spondence, K ∈ Shv(C) is a kernel sheaf, and c ∈ CorrC,K(F0,F1) is a cohomological correspondence
with kernel K.

• The composition of morphisms (c,K, c) : (A0,F0) → (A1,F1) and (d,L, d) : (A1,F1) → (A2,F2) is
(e,M, e), where e is the outer correspondence in the diagram

E

D C

A2 A1 A0

c′1 d′
0

d1 d0 c1 c0

where the diamond is Cartesian, the kernelM = d′∗0 K ⊗ c′∗1 L, and e = d ◦ c is the obvious notion of
composition of cohomological correspondences.

• Given two morphisms (c,K, c) and (d,L, d) from (A0,K0) to (A1,K1), a 2-morphism η : (c,K, c) →
(d,L, d) is a map of correspondences

A1 C A0

A1 D A0

c1 c0

f

d1 d0

(2.11)

in which f is proper, together with a map α : f∗L → K such that f!c = d.
• The monoidal unit 1LZ(S)! = (S, kS). The tensor product of objects (A0,F0) and (A1,F1) is defined

as
(A0,F0)⊗ (A1,F1) := (A0 ×S A1,F0 ⊠S F1).

The tensor product of morphisms is defined verbatim as in [FK24, §5.1.3].

Consider the subcategory LZ(S)0! with the same objects, whose 1-morphisms are those 1-morphisms
(c,K, c) in LZ(S)! with K = kC , and whose 2-morphisms are those (f, α) as above such that α : f∗kD → kC
is the tautological map. Then LZ(S)0! is the original 2-category considered in [LZ22] (but considering
algebraic stacks instead of schemes) and [FK24] (but working with étale sheaf theory rather than motivic
sheaf theory).

Lemma 2.30. Any object (A,F) such that F is ULA over S is dualizable in LZ(S)!, and whose dual is
given by (A,DS(F)).
Proof. The above statement already holds in the subcategory LZ(S)0! ⊂ LZ(S)! by [LZ22, Theorem2.16] and
any dualizable object in LZ(S)0! is dualizable in LZ(S)!. □

The following can be checked directly:

Lemma 2.31. For a morphism (c,K, c) : (A0,F0)→ (A1,F1) in which Fi are ULA over S for i = 0, 1, we

have (c,K, c)∨ = (c′,K, c∨) in which c′ = (A0
c0←− C

c1−→ A1) and c∨ is the image of c under the isomorphism

Hom0(c∗0F0 ⊗K, c!1F1) ∼= Hom0(K, (c1, c0)!(F1 ⊠S DS(F0))

∼= Hom0(K, (c0, c1)!(DS(F0)⊠S F1))

∼= Hom0(c∗1DS(F1)⊗K, c!0DS(F0))

Lemma 2.32. For a proper map f : A→ B and F ∈ Shv(A), consider correspondence cf = (B
f←− A = A)

and cohomological correspondence cf ∈ CorrA,kA
(F , f!F) given by the natural adjunction map F → f !f!F .

Then the map
(cf , kA, cf ) : (A,F)→ (B, f!F)

admits right adjoint
(c′f , kA, c

′
f ) : (B, f!F)→ (A,F)

in which c′f = (A = A
f−→ B) and c′f ∈ CorrA,kA

(f!F ,F) is the natural map f∗f!F ∼= f∗f∗F → F .
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Proof. The happens already in LZ(S)0! by [LZ22, Lemma2.9]. □

Note that the 1-category EndLZ(S)!(1LZ(S)!) has its objects consisting of triples (A,K, c) where A is an

algebraic stack over S, K ∈ Shv(A), and c ∈ CorrA,K(kS , kS) = HBM
0 (A/S,K). For any pair (A,F) ∈

LZ(S)! such that F is ULA over S together with an endomorphism (c,K, c) ∈ EndLZ(S)!(A,F), applying the
categorical trace construction in §2.1, one gets an object

tr((c,K, c), (A,F)) ∈ EndLZ(S)!(1LZ(S)!).

The following follows from unwinding definition:

Proposition 2.33. We have tr((c,K, c), (A,F)) = (Fix(C),K|Fix(C), trS(c)) ∈ EndLZ(S)!(1LZ(S)!).

Proof of Theorem 2.16. We claim that there is a 2-commutative diagram

(A,F) (A,F)

(B, f!F) (B, f!F)

(c,K, c)

(cf , kA, cf ) (cf , kA, cf )η

(d,L, f!c)

.

To define the 2-morphism η, consider the map between correspondence

B C A

B D ×B A A

id (f, c0)

f◦c1 c0

id

a pr2

in which a : D ×B A → B is induced from the map d1 : D → B. Note that (f, c0) is proper by the

pushability assumption. Consider the map (f, c0)
∗ pr∗1 L ∼= f∗L α−→ K. Unwinding the definition of push-

forward of cohomological correspondence in §2.2.2, we know (f, c0)!(cf ◦ c) = f!c ◦ cf . Therefore, the data
above defines a 2-morphism η.

By Lemma 2.30 and Lemma 2.32, we can apply the functoriality of categorical trace Definition 2.2 to
obtain a 2-morphism

tr(η) : (Fix(C),K|Fix(C), trS(c))→ (Fix(D),L|Fix(D), trS(f!c)).

Using Lemma 2.31 and unwinding the construction of Definition 2.2, we know that the natural transformation
tr(η) contains the data Fix(α) : Fix(f)∗(L|Fix(D)) → K|Fix(C). This forces Fix(f)! trS(c) = trS(f!c) and we
are done. □

Proof of Theorem 2.17. One can define a 2-category LZ(S)∗ which has the same objects and 1-morphisms
as LZ(S)! but with 2-morphism given by the same diagram of correspondence (2.11) and kernel but with f
quasi-smooth of some dimension d together with a map α : L⟨−2d⟩ → K such that f∗d = c. Then Lemma
2.30, Lemma 2.31, and Proposition 2.33 still hold in this case. The analogue of Lemma 2.32 is the following
easy lemma:

Lemma 2.34. For a smooth map f : A→ B of relative dimension d and F ∈ Shv(B), consider correspon-

dence c′f = (A = A
f−→ B) and the tautological cohomological correspondence c′f ∈ CorrA,kA

(F , f∗F). The
map

(c′f , kA, c
′
f ) : (B,F)→ (A, f∗F)

admits right adjoint

(cf , kA⟨2d⟩, cf ) : (A, f∗F)→ (B,F)
in which cf ∈ CorrA,kA⟨2d⟩(f

∗F ,F) is the natural map f∗F⟨2d⟩ ∼= f !F .

The rest of the proof remains the same as the proper push-forward case. □

Proof of Theorem 2.18. One can easily reduce to the case L = ΨK. In this case, one can define 2-categories
LZ(S)η (resp. LZ(S)s) by modifying the definition of LZ(S)! by requiring the sheaves defined only on the
generic fiber (resp. special fiber) instead. Moreover, on the level of 2-morphisms, we require the map f in
(2.11) to be an isomorphism. Then Lemma 2.30 and Lemma 2.31 are true for LZ(S)η and LZ(S)s. Consider
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the (strict) symmetric monoidal colax functor Ψ : LZ(S)η → LZ(S)s defined as follows: On objects, one
define Ψ(A,F) = (A,ΨF). On 1-morphisms, one define Ψ(c,K, c) = (c,ΨK,Ψc). Note that for morphisms

(A0,F0)
(c,K,c)−−−−→ (A1,F1)

(d,L,d)−−−−→ (A2,F2),

there is a 2-morphism

Ψ((d,L, d) ◦ (c,K, c)) = (D ×A1
C,Ψ(L⊠A1,η

K),Ψ(d ◦ c))
→ (D ×A1

C,Ψ(L)⊠A1,s
Ψ(K),Ψd ◦Ψc)

= Ψ(d,L, d) ◦Ψ(c,K, c)
.

Here, the morphism in the second row is defined by the natural map Ψ(L) ⊠A1,s
Ψ(K) → Ψ(L ⊠A1,η

K).
There is an obvious extension of Ψ to 2-morphisms. This defines the colax functor, which can be made
symmetric monoidal by [LZ22, Proposition 3.1].8 For x = (A,F) ∈ LZ(S)η where F is ULA over Sη,
note that Ψ(x) = (A,ΨF) is still dualizable since ΨF is ULA over Ss (by adapting the proof of [LZ22,
Corollary 3.9]). Consider F = (c,K, c) ∈ EndLZ(S)η (x). Note that we have 2-commutative diagram

1LZ(S)s Ψ(x)⊗Ψ(x∨) Ψ(x)⊗Ψ(x∨) 1LZ(S)s

Ψ(ux)

uΨ(x)

γ Ψ(F )⊗id

Ψ(evx)

evΨ(x)

δ

in which the 2-morphisms γ and δ are induced from the natural map kAs
→ ΨkAη

. By the colax property
of Ψ, we get a 2-morphism

η : (Fix(C),Ψ(K|Fix(C)η ),ΨtrS(c)) = Ψ(tr(F, x))→ tr(Ψ(F ),Ψ(x)) = (Fix(C), (ΨK)|Fix(C)s , trS(Ψc)).

After checking that this 2-morphism contains the natural map α : (ΨK)|Fix(C)s → Ψ(K|Fix(C)η ), we get
Ψ trS(c) = trS(Ψc).

□

2.3. Relative compactification. In this section, we assume that the G-varietyX is affine spherical. We are

going to construct a map π : Bun
X

G → BunG serving as the relative compactification of π : BunXG → BunG.

2.3.1. Preliminaries on spherical varieties. We briefly review the theory of spherical varieties relevant to us.
We refer to [SW22] for a more detailed treatment.9

In this section, we work with varieties defined over a field F . By a spherical variety, we mean a normal
G-variety with an open B-orbit. For an affine algebraic variety X with an action by an algebraic group G,
we denote X � G := Spec (O(X)G). For an affine spherical G-variety X, the quotient X � N is a T -variety,
on which the T -action factors through a quotient T ↠ TX , making X � N a toric TX -variety.

For simplicity, we first discuss the theory when charF = 0. In this case, we have a decomposition into
irreducible representations F (X) ∼=

⊕
λ∈X∗(TX) Vλ. Define cX ⊂ X∗(TX) such that O(X) ∼=

⊕
λ∈cX Vλ.

For each G-invariant discrete valuation v on X, by restricting v to all B-eigen functions on X, one obtains
an element in X∗(TX)Q. All elements in X∗(TX)Q obtained in this way generate a cone V ⊂ X∗(TX)Q, which
is a fundamental domain for the little Weyl group WX acting on X∗(TX)Q.

There exists a canonical filtration {Fλ ⊂ O(X)} defined as follows: The subspace Fλ ⊂ O(X) is the direct
sum of all sub irreducible G-representations of O(X) with highest weight µ satisfying ⟨λ− µ,V⟩ ≤ 0. Then
one can form the Rees algebra O(X ) :=

⊕
λ∈X∗(TX) Fλ⊗eλ ⊂ O(X×TX) and define the affine degeneration

of X to be the variety X := Spec (O(X )). Define TX,ss := Spec (
⊕

λ∈X∗(TX),⟨λ,V⟩≤0 k · eλ), which is a toric

TX,ss-variety where TX,ss := TX/Z(X)◦. Here Z(X)◦ is the torus satisfying X∗(Z(X)◦) ∼= V ∩−V ∩X∗(TX).

Both varieties X and TX,ss carry natural G × TX -actions. There is a natural G × TX -equivariant map

a : X → TX,ss. We use X • ⊂ X to denote the open subvariety whose intersection with each fiber
of a is the open G-orbit of the fiber. Denote X ◦ := a−1(TX). Then there is a canonical isomorphism
X ◦ ∼= X × TX/Z(X)◦ as G× TX -varieties.

We will need the following fact from [SW22, §2.2.2]:

Lemma 2.35. The stack X •/TX is representable by a proper algebraic variety.

8This is for schemes, but the same conclusion holds for algebraic stacks since one can check smooth locally.
9The author is grateful to Yiannis Sakellaridis for explaining the theory of affine degeneration of spherical varieties, especially,

Lemma 2.35. Any mistake in the section is due to the author.
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Proof. This is mentioned in [SW22, §2.2.2] without proof. We provide a proof for completeness. First note
that TX(F ) acts freely on X •(F ). Indeed, one only needs to check that TX(F ) acts freely on the F -points
of the special fiber of X • → TX,ss, which follows from the fact that this special fiber is homogeneous
horospherical with associated torus TX . Second, note that X • can be covered by TX -stable open affine
sub-varieties. Indeed, as a spherical G × TX -variety, X • can be covered by B × TX -stable open affine
sub-varieties, which are automatically TX -stable. These two facts imply that the quotient stack X •/TX is
representable by a scheme, which is clearly normal and of finite type.

We claim that X •/TX is a spherical G-variety. In fact, we only need to check that X •/TX is separated.
Indeed, since X • admits a unique closed G× TX -orbit, we know that X •/TX admits an open affine subset
U intersecting non-trivially with every G-orbit. For any two maps a1, a2 : Spec (R)→X •/TX inducing the
same map on Spec (Frac(R)) for a discrete valuation ring R, via translation by G, one can assume that a1, a2
has their image lying in U . This implies a1 = a2, hence, the separatedness of X •/TX .

Note that the valuations of the G-stable divisors of X •/TX generate exactly its valuation cone. We know
that the colored cone of X •/TX contains the valuation cone, hence, it is a proper algebraic variety. □

When charF > 0, we make the following assumption:

Assumption 2.36. The G-representation O(X) admits a good filtration in the sense of [Jan03, §II.4.16].
Moreover, we assume the good filtration can be chosen to be multiplicative. That is, there exists an increasing
filtration {Fλ ⊂ O(X)}λ∈X∗(TX)

10 such that:

• For each λ ∈ X∗(TX),

Fλ/F<λ
∼=

{
∇λ, λ ∈ cX

0, λ /∈ cX
(2.12)

Here, ∇λ ∈ Rep(G) is the costandard object11 with highest weight λ;
• The multiplication onO(X) preserves the filtration {Fλ}λ∈X∗(TX), that is, it induces Fλ⊗Fµ → Fλ+µ

for λ, µ ∈ X∗(TX).

Under this assumption, the entire argument in characteristic zero case can be modified to work using the
filtration {Fλ ⊂ O(X)}λ∈X∗(TX).

Here are some examples that Assumption 2.36 is satisfied:

Example 2.37 (Group case). When G = H ×H and X = H = H\H ×H for a split reductive group H, by
[Jan03, §II.4.20], we know that Assumption 2.36 is satisfied. Note that the multiplicativity of the filtration
is automatic since X is wavefront.12

Example 2.38 (Rankin–Selberg case). When G = GLn×GLn−1 and X = GLn = GLn−1 \GLn×GLn−1,
by applying [Jan03, §II.4.24], one knows that GLn−1 ⊂ GLn is a good pair (also called a Donkin pair).
Therefore, Assumption 2.36 is satisfied. The multiplicativity of the filtration is automatic since X is wave-
front.

Example 2.39 (Symmetric varieties). When X is a symmetric variety and F is algebraically closed, by
[BS24, Theorem2], one knows that Assumption 2.36 is satisfied when charF ̸= 2.

2.3.2. Relative compactification. In this section, we assume Assumption 2.36 when charF > 0. Moreover,
we assume that X = H\G is G-homogeneous. In this case, we have X ◦ ⊂X •.

Define

Bun
X

G := Map(C,X •/G ⊂X /G)/TX

B := Map(C, TX,ss)/TX .

Note that Bun
X

G contains an open substack

BunXG /Z(X)◦ = Map(C,X ◦/G)/TX

10The partial order on X∗(TX) is the same as for the filtration {Fλ}λ∈X∗(TX ) in characteristic zero case. That is, λ ≤ µ if

and only if ⟨λ− µ,V⟩ ≥ 0.
11In the notation of [Jan03], one has ∇λ = H0(λ).
12A spherical variety X is called wavefront if X∗(T ) → X∗(TX) maps the dominant cone in X∗(T )Q onto −V ⊂ X∗(TX)Q.
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and B contains an open substack

∗/Z(X)◦ = Map(C, TX,ss)/TX .

We have a Cartesian diagram

BunXG /Z(X)◦ Bun
X

G

∗/Z(X)◦ B

(2.13)

Note that there is a natural map π : Bun
X

G → BunG.

Proposition 2.40. The map π : Bun
X

G → BunG is representable in proper algebraic spaces.

Proof. Consider Bun
X

G×TX
:= Map(C,X •/G× TX ⊂X /G× TX). We have a Cartesian diagram

Bun
X

G Bun
X

G×TX

∗/TX BunTX

where the map ∗/TX → BunTX
is induced by the trivial TX -bundle over C. This implies that Bun

X

G →
Bun

X

G×TX
is a closed immersion. Therefore, we only need to show that each the natural map

πTX
: Bun

X

G×TX
→ BunG

is representable in proper algebraic spaces after restricting to connected components of BunTX
.

We use ξ ∈ C to denote the generic point of the curve C. We first show that πTX
: Bun

X

G×TX
→ BunG is

representable in algebraic spaces. By [Sta25, 0DSL], we only need to check that for each x = FG ∈ BunG(F ),
the fiber π−1TX

(x) has trivial stabilizers. In fact, for y = (FG,FTX
, s : FG ×C FTX

→ X ) ∈ π−1TX
(x)(F ), the

stabilizer of y is the subgroup of TX stabilizing the image of s, hence is contained in the stabilizer of

s(ξ̃) ∈X •(ξ) for any ξ̃ ∈ (FG ×C FTX
)(ξ) projecting to ξ. Note that TX acts freely on X •. It follows that

the stabilizer above must be trivial.
Then we show that the map πTX

is proper. Since πTX
is of finite type (after restricting to a connected

component of BunTX
) and quasi-separated, using the valuative criterion for properness [Sta25, 0CLY], we

only need to show that for any discrete valuation ring R with D = Spec R and D◦ = Spec Frac(R), any
diagram

D◦ Bun
X

G×TX

D BunG

admits a unique (and up to a unique isomorphism, same for below) dashed arrow making the diagram
commutative. Equivalently, this is to say that given any G-torsor aG : FG → D × C and a G-equivariant
map aD◦ : FG|D◦×C → X /TX whose restriction aD◦ |D◦×ξ : FG|D◦×ξ → X /TX has its image lying in
X •/TX ⊂X /TX , there exists a unique map a : FG →X /TX extending aD◦ and whose restriction a|D×ξ :
FG|D×ξ →X /TX has image lying in X •/TX ⊂X /TX . Note that X •/TX is a proper algebraic variety by
Lemma 2.35, by valuative criterion for properness, we know that there exists a unique map aξ : FG|D×ξ →
X •/TX extending aD◦ |D◦×ξ. This implies that there exists a unique map a2 : FG|D×ξ∪D◦×C → X /TX

extending aD◦ and whose restriction to FG|D×ξ has its image lying in X •/TX ⊂ X /TX . Since FG is
normal, FG|D×ξ∪D◦×C ⊂ FG has codimension two complement, and X is affine, we know that there exists
a unique desired map a : FG →X /TX .

□

Remark 2.41. When G = H × H and X = H for a split reductive group H of adjoint type, we obtain
the well-known fact that the relative compactification BunH → BunH ×BunH is proper. This special case
is proved in [FKM20, §A.1]. Our proof simplifies and generalizes the proof in loc.cit.
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3. Geometric trace and special cycle classes

In this section, we relate the minuscule homogeneous special cycle classes in §1.3.1 and the diagonal
cycle classes in §1.3.2 to the geometric Shtuka construction (introduced in §2.2.7) of the corresponding
cohomological correspondences. The main results in this section are Theorem 3.2 and Theorem 3.3.

• In §3.1, we prove a general theorem which will be used in the proof of the main results of this section.
• In §3.2 and §3.3, we formulate and prove the main results in this section.

3.1. General formalism in affine homogeneous case. Given an affine homogeneous spherical variety
X. Consider the map of correspondences

BunXG ×CI HkXG,I BunXG ×CI

BunG×CI HkG,I BunG×CI

π

←−
h X

I

−→
h X

I

πHk,I π

←−
h I

−→
h I

. (3.1)

We fix dominant coweight λI ∈ X∗(T )
I
+ and kernel sheaf K ∈ Shv(HkG,I) supported on HkG,λI

.

Theorem 3.1. Assume Assumption 2.36 is satisfied. For any F ∈ Shv(BunXG )c, the diagram

CorrHkX
G,I ,K|HkX

G,I

(F ⊠ kCI ,F ⊠ kCI ) CorrHkG,I ,K(π!F ⊠ kCI , π!F ⊠ kCI )

HBM
0 (ShtXG,I /C

I ,K|ShtXG,I
) HBM

0 (ShtG,I /C
I ,KShtG,I

)

πHk,I,!

trSht,CI
trSht,CI

πSht,I,!

is commutative.

Proof. Since K is supported on HkG,λI
⊂ HkG,I , we can restrict to the substack HkXG,λI

⊂ HkXG,I and
HkG,λI

⊂ HkG,I , hence all the stacks involved will be algebraic stacks. We will use the same notations for
maps restricted to these substacks. By Corollary 2.28, we only need to show that πHk,I is a composition of
maps of correspondences admitting compactification and check the goodness in each step.

For the compactification, we can factor the map of correspondence (3.1) as

BunXG ×CI HkXG,λI
BunXG ×CI

BunXG /Z(X)◦ × CI HkXG,λI
/Z(X)◦ BunXG /Z(X)◦ × CI

BunG×C HkG,λI
BunG×CI

π1×id π1,Hk,I π1×id

π2×id π2,Hk,I π2×id

. (3.2)

We only need to show that both π1,Hk,I and π2,Hk,I admit compactification. For π1,Hk,I , one can choose any
proper toric embedding Z(X)◦ ⊂W and consider

BunXG ×CI HkXG,λI
BunXG ×CI

(BunXG ×W )/Z(X)◦ × CI (HkXG,λI
×W )/Z(X)◦ (BunXG ×W )/Z(X)◦ × CI

BunXG /Z(X)◦ × CI HkXG,λI
/Z(X)◦ BunXG /Z(X)◦ × CI

j1×id j1,Hk,I j1×id

π1×id π1,Hk,I π1×id

in which Z(X)◦ acts diagonally on each stack in the middle row. Here, each upper vertical map is induced
by the inclusion map ∗ = Z(X)◦/Z(X)◦ ⊂ W/Z(X)◦, and each lower vertical map is the projection to
the first factor. Note that the entire middle correspondence admits a map to W/Z(X)◦ and the boundary
locus is stable because it is the fiber over ∂W/Z(X)◦ ⊂W/Z(X)◦. This shows that the factorization above
satisfies the condition in Definition 2.26 and π1,Hk,I admits compactification.
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For the map π2,Hk,I , we can consider

BunXG /Z(X)◦ × CI HkXG,λI
/Z(X)◦ BunXG /Z(X)◦ × CI

Bun
X

G × CI Hk
X

G,λI
Bun

X

G × CI

BunG×CI HkG,λI
BunG×CI

j×id jHk,I j×id

π×id πHk,I π×id

.

Here the left and right columns both come from the relative compactification BunXG /Z(X)◦
j−→ Bun

X

G
π−→

BunG introduced in §2.3.2 (whose existence relies on Assumption 2.36). The middle column is defined as

follows: recall that Bun
X

G can be identified with (the quotient by Z(X)◦ of) the moduli of (EG, s) where EG is
a G-bundle on C and s : EG →X is a G-equivariant map which generically has its image lying in X • ⊂X .

We take Hk
X

G,λI
to be the closed substack of Bun

X

G ×BunG
HkG,λI

defined as (the quotient by Z(X)◦ of)

the moduli of tuples (EG,1, EG,2, cI , a, s) where cI ∈ CI , a : EG,1|C−{cI}
∼→ EG,2|C−{cI} is an isomorphism of

G-bundles over C−{cI} with its pole at cI bounded by λI , s : EG,2 →X is a G-equivariant map generically
has its image lying in X • ⊂X such that the composition s ◦ a : EG,1|C−{cI} →X can be extended to the
entire EG,1. From the definition, it is clear that the middle column, and hence the diagram above, is defined.

The fact that the diagram above satisfies the conditions in Definition 2.26 follows from Proposition 2.40
and the diagram below, in which each square is Cartesian

HkXG,λI
/Z(X)◦ Hk

X

G,λI

BunXG /Z(X)◦ Bun
X

G

∗/Z(X)◦ B

.

Here, the lower square is (2.13), the upper vertical map can be either the left or right Hecke map.
The goodness in each step of compactification follows from the fact that π1,!, j1,!, and j! preserve con-

structibility. □

3.2. Minuscule homogeneous special cycles classes. In this section, assume we are in the setting of
§1.3.1.

Consider the diagram (1.28) and take X = H\G, we have the following result comparing geometric trace
with special cycle class:

Theorem 3.2. Assuming Assumption 2.36, we have

πSht,I,![ShtH,λH,I
/CI ] = trSht,CI (πHk,I,![HkH,λH,I

/BunH ×CI ]) ∈ HBM
−dλI

+2dλH,I
(ShtG,I /C

I , ICV I |ShtG,I
).

Proof. Take K = ICV I |ShtG,I
, F = kBunH

, and

c = cλH,I
= [HkH,λH,I

/BunH ×CI ] ∈ CorrHkH,λH,I
,k(kBunH

⊠ kCI , kBunH
⊠ kCI ⟨−2dλH,I

⟩) (3.3)

in Theorem 3.1, we are reduced to show

[ShtH,λH,I
/CI ] = trSht,CI ([HkH,λH,I

/BunH ×CI ]) ∈ HBM
2dλH,I

(ShtH,λH,I
/CI).

This follows directly from Theorem 2.17. □

3.3. Diagonal cycle classes. In this section, assume we are in the setting of §1.3.2 and take G = H ×H
and X = H.

Theorem 3.3. We have

⟨−,−⟩λH,I
= trSht,CI (∆Hk,I,![HkH,λH,I

/BunH ×CI ]) ∈ Hom0((lH,I,!(ICVλH,I
|ShtH,λH,I

))⊗2, kCI ).
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Proof. By Example 2.37, Assumption 2.36 is satisfied. Therefore, we can apply Theorem 3.1. Take K =
ICλI

∈ Shv(HkG,I), F = kBunH
, and

c = [HkH,λH,I
/BunH ×CI ] ∈ CorrHkH,I ,IC

⊗2
VλH,I

(kBunH ×CI , kBunH ×CI ) (3.4)

in Theorem 3.1, we are reduced to show

[ShtH,λH,I
/CI ] = trSht,CI ([HkH,λH,I

/BunH ×CI ]) ∈ HBM
0 (ShtH,λH,I

/CI , IC⊗2VλH,I
|ShtH,λH,I

)).

Note that restriction along the open Schubert cell Sht◦H,λH,I
⊂ ShtH,λH,I

gives an isomorphism

HBM
0 (ShtH,λH,I

/CI , IC⊗2VλH,I
|ShtH,λH,I

) ∼= HBM
2dλH,I

(Sht◦H,λH,I
/C).

Applying Theorem 2.17 for the open immersion, we are reduced to show

[Sht◦H,λH,I
/CI ] = trSht,CI ([Hk◦H,λH,I

/BunH ×CI ]) ∈ HBM
2dλH,I

(Sht◦H,λH,I
/CI)

which again follows from Theorem 2.17. □

4. Categorical trace and geometric trace

In this section, we interpret the geometric Shtuka construction of a special cohomological correspondence
as a categorical trace. The main result in this section is Theorem 4.9.

• In §4.1, we review some basic facts about the geometric Langlands conjecture.
• In §4.2, we review the interpretation of Shtuka cohomology as a categorical trace.
• In §4.3, we develop some tools to compute the functoriality of categorical trace in our setting.
• In §4.4, we formulate and prove the main result in this section.

4.1. Recollections on geometric Langlands. Consider the natural embedding ι : ShvNilp(BunG) →
Shv(BunG), it admits a right adjoint ιR : Shv(BunG)→ ShvNilp(BunG). Also, consider ι2 : ShvNilp(Bun

2
G)→

Shv(Bun2G) and its right adjoint ι2,R : Shv(Bun2G)→ ShvNilp(Bun
2
G). We sometimes omit the functor ι (resp.

ι2) and regard ShvNilp(BunG) (resp. ShvNilp(Bun
2
G)) as a subcategory of Shv(Bun2G) (resp. Shv(Bun

2
G)).

One has the following fundamental result:

Theorem 4.1 ([GR25]). The functor ιR : Shv(BunG) → ShvNilp(BunG) coincides with the Beilinson’s
spectral projector P defined in [AGK+22c, §13.4.4]. In particular, ιR is continuous.

Consider ∆!kBunG
∈ Shv(Bun2G) where ∆ : BunG → Bun2G is the diagonal map and define

u := ιR(∆!kBunG
) ∈ ShvNilp(Bun

2
G).

Define

ev := Γc ◦∆∗ ◦ ι2 : ShvNilp(Bun
2
G)→ Vect.

By [AGK+22c, Theorem16.3.3], the exterior tensor product functor

⊠ : ShvNilp(BunG)
⊗2 ∼→ ShvNilp(Bun

2
G)

is an equivalence of categories. In the following, we usually omit the functor ⊠ and do not distinguish
detween ShvNilp(BunG)

⊗2 and ShvNilp(Bun
2
G). Also, by [AGK+22c, TheoremF.9.7], for any finite set I, the

exterior product

⊠ : ShvNilp(BunG)⊗QLisse(CI)→ ShvNilp(BunG×CI)

is an equivalence of categories. Here we abbreviate ShvNilp(BunG×CI) := ShvNilp×{0}(BunG×CI). From

now on, we do not distinguish between ShvNilp(BunG)⊗QLisse(CI) and ShvNilp(BunG×CI) and often omit
the exterior product.

Recall the following result from [AGK+22b, Theorem3.2.2]:

Theorem 4.2. The category ShvNilp(BunG) admits a self-duality with unit

u ∈ ShvNilp(BunG)
⊗2

and counit

ev : ShvNilp(BunG)
⊗2 → Vect.
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One of the adjunction map is given by

α : (id⊗ ev)(u⊗−) = pr1,! ◦(id×∆)∗(ι2 ◦ ι2,R(∆!kBunG
)⊠−)→ pr1,! ◦(id×∆)∗((∆!kBunG

)⊠−) ∼→ id

where the first identity follows from definition, the second natural transformation comes from the adjunction
map ι2 ◦ ι2,R → id, the third isomorphism is given by base change isomorphisms and projection formulas.
Another adjunction map β : (ev⊗id)(−⊗ u)→ id admits a similar description.

Recall the following properties of Hecke operators introduced in §1.5.3:

Lemma 4.3. (1) The right adjoint of TV I : Shv(BunG×CI)→ Shv(BunG×CI) is

Tc∗(V I)
∼=
←−
h ∗(
−→
h !(−)⊗! ICV I ) ∼=

←−
h !(
−→
h ∗(−)⊗ ICV I ) : Shv(BunG×CI)→ Shv(BunG×CI).

Here cI ∈ End(ǦI) is the Cartan involution.
(2) There is a canonical isomorphism of functors lI,!(−⊗ TV I (−)) ∼= lI,!(Tc∗(V I)(−)⊗−).
(3) The functor TV I preserves the full-subcategory ShvNilp(BunG×CI) ⊂ Shv(BunG×CI), hence, gives

a functor TV I : ShvNilp(BunG×CI)→ ShvNilp(BunG×CI).

Proof. The first is immediate from the usual six-functor formalism (see [AGK+22b, 1.1.5]). The second
follows directly from projection formulas (see [AGK+22b, Lemma3.4.8]). The third is [AGK+22c, Theo-
rem14.2.4]. □

4.2. Shtuka cohomology as a categorical trace. These is a natural map

trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(BunG×CI))
LTSerre

−−−−→ lI,!(ICV I |ShtG,I
) (4.1)

defined as

trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(BunG×CI))

∼=(ev⊗id) ◦ (FrobBunG
×id)! ◦ TV I⊠triv(u⊗ kCI )

=lI,! ◦ (FrobBunG
×id)! ◦ TV I⊠triv(ι ◦ ιR(∆!kBunG

)⊠ kCI )

→lI,! ◦ (FrobBunG
×id)! ◦ TV I⊠triv((∆!kBunG

)⊠ kCI )

∼=lI,!(ICV I |ShtG,I
)

in which the third map uses the adjunction ι ◦ ιR → id.
By [AGK+22a, Theorem4.1.2, Theorem5.5.6], we have

Theorem 4.4. The map (4.1) is an isomorphism.

4.3. Duality of functors. We would like to apply functoriality of trace construction in §2.1 to functors∫
P,Nilp

:= Γc(P ⊗−) : ShvNilp(BunG)→ Vect

for some P ∈ Shv(BunG)c. For this purpose, we need to study its right adjoint
∫
P,Nilp,R

and dual functor∫ ∨
P,Nilp,R

.

We first study the version without nilpotent singular support. For each constructible sheaf

P ∈ Shv(BunG)c,

consider the functor ∫
P
:= Γc(P ⊗−) : Shv(BunG)→ Vect.

Lemma 4.5. The functor
∫
P preserves compact objects, hence, it admits a continuous right adjoint.

Proof. By [AGK+22c, PropositionF.4.7] the category Shv(BunG) is generated by compact objects of the
form a!FS where S is an affine scheme equipped with a map a : S → BunG of finite type, and FS ∈ Shv(S)c
is a constructible sheaf on S. Since

∫
P a!FS

∼= Γc(FS ⊗ a∗P) is a perfect complex, we know
∫
P preserves

compact objects. □
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The right adjoint of
∫
P admits the following explicit description: Consider∫

P,R
:= −⊗ D(P) : Vect→ Shv(BunG),

we have an adjoint pair (
∫
P ,

∫
P,R). The first adjunction map is given by

αP :

∫
P
◦
∫
P,R

= Γc(−⊗ P ⊗ D(P))→ Γc(−⊗ ωBunG
)→ id. (4.2)

Here, the second map is given by the natural map P ⊗ D(P)→ ωBunG
, the third arrow uses the adjunction

map for the adjoint pair (f!, f
!) for f : BunG → ∗. The second adjunction map is given by

βP : id→ −⊗ (P ⊗! D(P))→ (−⊗ P)⊗! D(P)→ Γc(−⊗ P)⊗ D(P) =
∫
P,R
◦
∫
P
. (4.3)

Here, the first map uses the adjunction kBunG
→ P ⊗! D(P), the second map comes from the base change

map ∆∗(id×∆)! → ∆!(∆× id)∗ for the Cartesian diagram

BunG Bun2G

Bun2G Bun3G

∆

∆ id×∆

∆×id

,

the third map uses the adjunction map for the adjoint pair (f!, f
!).

By restricting to ShvNilp(BunG) ⊂ Shv(BunG), one gets functor∫
P,Nilp

= Γc(−⊗ P) : ShvNilp(BunG)→ Vect

which has continuous right adjoint ∫
P,Nilp,R

= −⊗ ιR(D(P)).

The left and right lax-commutative squares in (2.1) for the functor
∫
P,Nilp

becomes

Vect ShvNilp(BunG)
⊗2

Vect Vect

u

id
∫
P,Nilp

⊗
∫ ∨
P,Nilp,RγP,Nilp

id

(4.4)

ShvNilp(BunG)
⊗2 Vect

Vect Vect

ev

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

id
δP,Nilp

id

. (4.5)

We now introduce versions of (4.4) and (4.5) without the nilpotent singular support condition, which are
the left and right squares of the diagram (2.4) for S = ∗, A = BunG, F = P. Consider lax-commutative
diagrams

Vect Shv(Bun2G)

Vect Vect

∆!kBunG

id
∫
P⊠D(P)γP

id

(4.6)

Shv(Bun2G) Vect

Vect Vect

Γc◦∆∗

∫
P⊠D(P) id

δP

id

. (4.7)
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Here the first natural transformation γP is defined by

γP :

∫
P⊠D(P)

∆!kBunG

∼→ Γc(P ⊗ D(P))→ Γc(ωBunG
)→ k

and the second natural transformation δP is defined by

δP : Γc ◦∆∗(−)
∼→ Γc(−⊗∆!kBunG

)

→ Γc(−⊗∆!(P ⊗! D(P)))
∼→ Γc(−⊗∆!∆

!(P ⊠ D(P)))
→ Γc(−⊗ (P ⊠ D(P)))

=

∫
P⊠D(P)

.

We want to relate diagrams (4.4)(4.5) to (4.6)(4.7).

Lemma 4.6. We have a natural commutative square

ShvNilp(BunG)
⊗2 Shv(Bun2G)

Vect Vect

ι2◦⊠

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

∫
P⊠D(P)

id

(4.8)

Proof. This following directly from the description
∫ ∨
P,Nilp,R

= Γc(− ⊗ ι ◦ ιR(D(P)))
∼→ Γc(− ⊗ D(P)) in

which is second isomorphism follows from [AGK+22b, Proposition 3.4.6]. □

Proposition 4.7. We have commutative cubes

Vect ShvNilp(BunG)
⊗2

Vect Shv(Bun2G)

Vect Vect

Vect Vect

u

ι2

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

∆!kBunG

∫
P⊠D(P)

(4.9)

and

ShvNilp(BunG)
⊗2 Vect

Shv(Bun2G) Vect

Vect Vect

Vect Vect

ev

ι2

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

∫
P⊠D(P)

Γc◦∆∗

. (4.10)

In the cube (4.9), the back face is (4.4), the front face is (4.6), the right face is (4.8), and the other faces are
equipped with the obvious natural transformations. In the cube (4.10), the back face is (4.5), the front face
is (4.7), the left face is (4.8), and the other faces are equipped with the obvious natural transformations.
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Proof. Note that we have commutative diagram

Γc((P ⊠ D(P))⊗ ι2ι2,R∆!kBunG
) Γc((P ⊠ D(P))⊗∆!kBunG

)

Γc(P ⊗ pr1,! ◦(id×∆)∗(ι2ι2,R(∆!kBunG
)⊠ D(P))) Γc(P ⊗ pr1,! ◦(id×∆)∗(∆!kBunG

⊠ D(P)))

∼ ∼ .

(4.11)
Here, the vertical maps are the natural ones only involving six-functor formalism, and both horizontal maps
only use the adjunction ι2 ◦ ι2,R → id. Unwinding definitions, the two natural transformations from the
top-left-back corner to the bottom-right-front corner in the cube (4.9) can be identified with the two maps
Γc((P⊠D(P))⊗ι2ι2,R∆!kBunG

)→ k obtained by composing the two routes from the top-left corner of (4.11)
to the top-right corner of (4.11) with the map

Γc((P ⊠ D(P))⊗∆!kBunG
)
∼→ Γc(P ⊗ D(P))→ Γc(ωBunG

)→ k.

This proves the commutativity of (4.9). The commutativity of the second square follows from the following
commutative square

Γc(−⊗−) Γc((−⊠−)⊗∆!kBunG
)

Γc(Γc(−⊗ P)⊗ D(P)⊗−) Γc(−⊗ P)⊗ Γc(−⊗ D(P))

∼

∼

.

Here the left vertical map uses the adjunction map (4.3) and the right vertical arrow uses the natural map
∆!kBunG

→ P ⊠ D(P). The commutativity of this diagram is encoded in the six-functor formalism and is
routine.

□

For later use, we need a version of Proposition 4.7 with legs, which we introduce now. Fix a finite set I,
consider the map lI : BunG×CI → CI . Define∫

P,I
:= lI,!(−⊗ (P ⊠ kCI )) : Shv(BunG×CI)→ Shv(CI)

and ∫
P,Nilp,I

:=

∫
P,I
◦(ι⊗ id) =

∫
P,Nilp

⊗id : ShvNilp(BunG)⊗QLisse(CI)→ QLisse(CI).

Proposition 4.8. We have commutative cubes

QLisse(CI) ShvNilp(BunG)
⊗2 ⊗QLisse(CI)

Shv(CI) Shv(Bun2G×CI)

QLisse(CI) QLisse(CI)

Shv(CI) Shv(CI)

u⊗id

⊠◦(ι2⊗id)

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

⊗id
(∆×id)!l∗I

∫
P⊠D(P),I

(4.12)
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and

ShvNilp(BunG)
⊗2 ⊗QLisse(CI) QLisse(CI)

Shv(Bun2G×CI) Vect

QLisse(CI) QLisse(CI)

Shv(CI) Shv(CI)

ev⊗id

⊠◦(ι2⊗id)

∫
P,Nilp

⊗
∫ ∨
P,Nilp,R

⊗id

∫
P⊠D(P),I

lI,!◦(∆×id)∗

(4.13)

in which the natural transformations are natural generalizations of those in Proposition 4.7.

The proof is parallel to the proof of Proposition 4.7.

4.4. Main result.

4.4.1. Special cycle classes as geometric trace. Given P ∈ Shv(BunG)c and a cohomological correspondence

c ∈ Hom0(P ⊠ kCI , TV I (P ⊠ kCI )) = Hom0(Tc∗(V I)(P ⊠ kCI ),P ⊠ kCI ) = CorrHkG,I ,ICV I
(P ⊠ kCI ,P ⊠ kCI ),

we can apply the second construction of geometric trace via the diagram (2.4), in which we take S = CI ,

the correspondence (A
c1←− C

c0−→ A) = (BunG×CI
←−
h I←−− HkG,I

−→
h I−−→ BunG×CI), K = ICV I ∈ Shv(HkG,I),

F = P ⊠ kCI ∈ Shv(BunG×CI), and the cohomological correspondence c(1).
In this case, the diagram (2.4) becomes

Shv(CI) Shv(Bun2G×CI) Shv(Bun2G×CI) Shv(CI)

Shv(CI) Shv(CI) Shv(CI) Shv(CI)

(∆×id)!l∗I

id

(FrobBunG
×id)!◦TV I

∫
P⊠DP,IγP,I

lI,!(∆×id)∗

∫
P⊠DP,Iη

c(1)
id

δP,I

id id id

. (4.14)

By Lemma 2.14, we know that the natural transformation from the upper route to the lower route from
the top-left corner to the bottom-right corner of (4.14) evaluated at kCI ∈ Shv(CI) gives

trSht,CI (c) = trCI (c(1)) ∈ HBM
0 (ShtG,I /C

I , ICV I |ShtG,I
).

4.4.2. Special cycle classes as categorical trace. Restricting the natural transformation ηc(1) in (4.14) to the
full-subcategory ShvNilp(BunG)⊗QLisse(CI) ⊂ Shv(BunG×CI), we get a natural transformation

ηc(1),Nilp :

∫
P,I,Nilp

◦(Frob×id)! ◦ TV I →
∫
P,I,Nilp

.

Since the functor
∫
P,Nilp

: ShvNilp(BunG) → Vect admits continuous right adjoint, using the natural

transformation ηc(1),Nilp and applying the construction Definition 2.2, we get a natural map

tr(ηc(1),Nilp) : trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(BunG×CI))→ trQLisse(CI)(id,QLisse(CI)).

4.4.3. Relating geometric trace and categorical trace. The main result in this section is the following:

Theorem 4.9. We have a commutative square

trQLisse(CI)((Frob×id)! ◦ TV IShvNilp(BunG)⊗QLisse(CI)) lI,!(ICV I |ShtG,I
)

trQLisse(CI)(id,QLisse(CI)) kCI

trQLisse(CI )(η
(1)
c,Nilp)

LTSerre

∼

trSht,CI (c)

∼
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Proof. Using the duality on ShvNilp(BunG) with unit and counit (u, ev), the element trQLisse(CI)(ηc(1),Nilp)
is computed as the composition of natural transformations in the diagram

QLisse(CI) ShvNilp(BunG)
⊗2 ⊗QLisse(CI) ShvNilp(BunG)

⊗2 ⊗QLisse(CI) QLisse(CI)

QLisse(CI) QLisse(CI) QLisse(CI) QLisse(CI)

u⊗id

id

(FrobBunG
×id)!◦TV I⊗id

∫
P,I,Nilp

⊗
∫
P,I,Nilp,R

⊗id
γP,Nilp⊗id

ev⊗id

∫
P,I,Nilp

⊗
∫
P,I,Nilp,R

⊗id
η
c(1),Nilp

⊗id
id

δP,Nilp⊗id
id id id

(4.15)
in which the left and right squares are the two back squares in Proposition 4.8. By Proposition 4.8, there is
a natural map from the diagram (4.15) to (4.14) (such a map means three commutative cubes), which gives
our desired identity.

□

4.5. Proof of main result.

Proof of Theorem 1.10 and Theorem 1.11. Take P = PX in Theorem 4.9 for the spherical variety X in each
case. Theorem 1.10 follows from Theorem 4.9 and Theorem 3.2. Theorem 1.11 follows from Theorem 4.9
and Theorem 3.3. □

5. Isotypic part of special cycle classes

In this section, we study the restriction of special cycle classes on the isotypic part of the cohomology of
Shtukas.

• In §5.1, we review some basic properties of the geometric isotypic part.
• In §5.2, we study the isotypic part of special cycle classes for split semisimple groups.
• In §5.3, we study the isotypic part of special cycle classes for split reductive groups.
• In §5.4, we study the isotypic part of special cycle classes which have middle-dimension on the generic
fiber.

• In §5.5, we study the isotypic part of diagonal cycle classes.

5.1. Isotypic part of geometric period. In this section, we recall the geometric isotypic part introduced
in [LW25] and its basic properties.

For a Ǧ-local system σ ∈ LocǦ(k) and a Hecke eigensheaf Lσ ∈ ShvNilp(BunG), given an affine smooth G-
variety X, the geometric isotypic part of the X-period integral is defined to be the complex

∫
X,Nilp

Lσ ∈ Vect,

which we simply call the geometric isotypic part.

5.1.1. Hecke action. The geometric isotypic part is equipped with Hecke actions, which we now recall. For
V I ∈ Rep(ǦI), given a cohomological correspondence cV I ∈ CorrHkG,I ,ICV I ⟨−dI⟩(PX ⊠kCI ,PX ⊠kCI ), there
is an induced natural transformation constructed in §2.2.6

ηcV I
:

∫
X,Nilp,I

◦TV I →
∫
X,Nilp,I

.

Evaluating the natural transformation ηcV I
at Lσ ⊠ kCI ∈ ShvNilp(BunG)⊗QLisse(CI), we get a map

acV I ,σ : V I
σ ⟨−dI⟩ ⊗

∫
X,Nilp

Lσ → kCI ⊗
∫
X,Nilp

Lσ.

Since there is an obvious isomorphism

Hom0(V I
σ ⟨−dI⟩ ⊗

∫
X,Nilp

Lσ, kCI ⊗
∫
X,Nilp

Lσ) ∼= Hom0(Γ(V I
σ )⟨−dI + 2r⟩ ⊗

∫
X,Nilp

Lσ,

∫
X,Nilp

Lσ),

we can also treat acV I ,σ as a map

acV I ,σ : Γ(V I
σ )⟨−dI + 2r⟩ ⊗

∫
X,Nilp

Lσ →
∫
X,Nilp

Lσ. (5.1)
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We say that the map acV I ,σ equips the geometric isotypic part
∫
X,Nilp

Lσ with a Hecke action by Γ(V I
σ )⟨−dI+

2r⟩. Equivalently, we can write the data above as a map

acV I ,σ : Γ(V I
σ )⟨−dI + 2r⟩ → End(

∫
X,Nilp

Lσ).

One can also fix a point cI ∈ CI(Fq) and consider the Hecke operator with leg restricted to cI which is
TV I ,cI : ShvNilp(BunG) → ShvNilp(BunG). In this case, one can restrict the cohomological correspondence

cV I to cV I ,cI ∈ CorrHkG,cI ,ICV I ⟨−dI⟩(PX ,PX). Here, we define HkG,cI := HkG,I ×CI{cI}. It gives a map

acV I,cI ,σ
: V I

σ,cI ⟨−dI⟩ ⊗
∫
X,Nilp

Lσ →
∫
X,Nilp

Lσ. (5.2)

However, the data of (5.2) is completely contained in (5.1) as follows: Note that there is a map obtained
from (i!, i

!)-adjunction for i : {cI} → CI

[cI ] : V I
σ,cI → Γ(V I

σ )⟨2r⟩.

Then we have acV I,cI ,σ
= acV I ,σ ◦ ([cI ]⊗ id).

5.1.2. Associativity. The Hecke action (5.1) enjoys associativity for composition of cohomological correspon-
dences.

Take I = {1, 2 · · · , r}. Given Vi ∈ Rep(Ǧ) and cVi ∈ CorrHkG,{i},ICVi
⟨−di⟩(PX ⊠ kC ,PX ⊠ kC) for i ∈ I,

consider the cohomological correspondence arising from composition

cV I = cV1 ◦ cV2 ◦ · · · ◦ cVr

for V I = ⊠i∈IVi and dI =
∑

i∈I di whose definition is as follows: Note that for each i ∈ I there is a map

CorrHkG,{i},ICVi
⟨−di⟩(PX ⊠ kC ,PX ⊠ kC)→ CorrHkG,I ,ICVi

⟨−di⟩(PX ⊠ kCI ,PX ⊠ kCI ).

Here the sheaf ICVi
∈ Shv(HkG,I) is understood as ICtriv⊠···⊠Vi⊠···⊠triv ∈ Shv(HkG,I) for triv ⊠ · · · ⊠ Vi ⊠

· · · ⊠ triv ∈ Rep(ǦI). Putting this together with the usual composition of cohomological correspondences,
we get a map

◦ :
r∏

i=1

CorrHkG,{i},ICVi
⟨−di⟩(PX ⊠ kC ,PX ⊠ kC)→

r∏
i=1

CorrHkG,I ,ICVi
⟨−di⟩(PX ⊠ kCI ,PX ⊠ kCI )

→ CorrHkG,I ,ICV I ⟨−dI⟩(PX ⊠ kCI ,PX ⊠ kCI )

.

In this case, we have

acV I ,σ = acV1
,σ ◦ · · · ◦ acVr ,σ

∈ Hom0(Γ(V I
σ )⟨−dI + 2r⟩ ⊗

∫
X,Nilp

Lσ,

∫
X,Nilp

Lσ)

where the later is understood as the composition

acV1
,σ ◦ · · · ◦ acVr ,σ

: Γ(V I
σ )⟨−dI + 2r⟩ ⊗

∫
X,Nilp

Lσ = ⊗r
i=1Γ(Vi,σ)⟨−di + 2⟩ ⊗

∫
X,Nilp

Lσ

id⊗acVr−−−−−→ ⊗r−1
i=1Γ(Vi,σ)⟨−di + 2⟩ ⊗

∫
X,Nilp

Lσ

· · ·
id⊗acV1−−−−−→

∫
X,Nilp

Lσ

.

5.1.3. Commutator relation. When the cohomological correspondences cVi
come from local special coho-

mological correspondences as defined in [LW25, Definition 4.39], the Hecke action (5.1) enjoys commutator
relations coming from the commutator relations in the local Plancherel algebra. By associativity, it is enough
to consider the case I = {1, 2}. Assume each cVi

comes from a local special cohomological correspondence
clVi

. Moreover, assume [clV1
, clV2

] = ℏ · clV1⊗V2
for some local special cohomological correspondence clV1⊗V2

. We
use

cV1⊗V2
∈ CorrHkG,{1},ICV1⊗V2

⟨−d1−d2+2⟩(PX ⊠ kC ,PX ⊠ kC)
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to denote the corresponding global special cohomological correspondence. In this case, assuming [LW25,
Conjecture 4.45], we have

acV1
◦ acV2

− acV2
◦ acV1

= acV1⊗V2
◦ (∪⊗ id) ∈ Hom0(Γ(V1,σ)⊗Γ(V2,σ)⟨−d1− d2 +4⟩⊗

∫
X,Nilp

Lσ,

∫
X,Nilp

Lσ)

where ∪ : Γ(V1,σ)⊗ Γ(V2,σ)→ Γ((V1 ⊗ V2)σ) is the cup product.

5.2. Isotypic part of special cycle classes I. From now on, assume that σ ∈ LocarithǦ (k) is a Ǧ-Weil
local system and the Hecke eigensheaf Lσ is equipped with a compatible Weil sheaf structure. We drop the
subscript V I in cV I and write c = cV I .

5.2.1. Fake special cycle classes. From the Hecke action (5.1), one can construct the fake special cycle class

zc,σ ∈ H0(Γ(V I
σ )⟨−dI + 2r⟩)∗ ∼= Hom0(V I

σ ⟨−dI⟩, kCI )

defined as the element satisfying

zc,σ(m) = tr(ac,σ(m) ◦ Frob,
∫
X,Nilp

Lσ) (5.3)

for any m ∈ H0(Γ(V I
σ )⟨−dI + 2r⟩). See (1.27) for an alternative but equivalent definition. Here, we are

assuming the trace written above is convergent. The ideal case is the following:

Assumption 5.1. The complex
∫
X,Nilp

Lσ is perfect.

We will assume Assumption 5.1 until the end of §5.2. Under this assumption, the fake special cycle classes
admit the following interpretation via categorical trace: Consider the lax-commutative square

QLisse(CI) QLisse(CI)

QLisse(CI) QLisse(CI)

−⊗V I
σ ⟨−dI⟩

−⊗
∫
X,Nilp

Lσ −⊗
∫
X,Nilp

Lσηac,σ

id

(5.4)

in which the natural transformation is defined as

ηac,σ
: −⊗ V I

σ ⟨−dI⟩ ⊗
∫
X,Nilp

Lσ
−⊗ac,σ−−−−−→ −⊗ kCI ⊗

∫
X,Nilp

Lσ.

The natural transformation ηac,σ admits a Frobenius twist

η(1)ac,σ
: −⊗ V I

σ ⟨−dI⟩ ⊗
∫
X,Nilp

Lσ
−⊗ac,σ◦(id⊗Frob)−−−−−−−−−−−−→ −⊗ kCI ⊗

∫
X,Nilp

Lσ.

Then one has a commutative diagram

trQLisse(CI)(−⊗ V I
σ ⟨−dI⟩,QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)(id,QLisse(CI)) kCI

trQLisse(CI )(η
(1)
ac,σ)

∼

zc,σ

∼

. (5.5)

Here, the horizontal maps are the most obvious isomorphisms. The left vertical map is induced by the
functoriality of categorical trace in Definition 2.2.

5.2.2. Fake versus real I. For a cohomological correspondence

c ∈ CorrHkG,I ,ICV I ⟨−dI⟩(PX ⊠ kCI ,PX ⊠ kCI )

and σ ∈ LocarithǦ (k). On the one hand, one has the fake special cycle classes

zc,σ ∈ Hom0(V I
σ ⟨−dI⟩, kCI )

whenever it is well-defined. On the other hand, one has the geometric trace

trSht,CI (c) ∈ Hom0(lI,!(ICV I |ShtG,I
)⟨−dI⟩, kCI ).

We would like to relate these two.
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The most natural way of doing this is to construct a map

ξσ,I : V I
σ → lI,!(ICV I |ShtG,I

) (5.6)

which only depends on the Hecke eigensheaf Lσ (in particular, independent of the G-variety X) and ask if

zc,σ = trSht,CI (c) ◦ ξσ,I . (5.7)

It turns out that one can achieve this under good assumptions.
In this subsection, we will achieve this under a stronger assumption compared to Assumption 5.1, which

is:

Assumption 5.2. The group G is split semisimple, and the object Lσ ∈ ShvNilp(BunG) is compact.

Remark 5.3. Note that since the functor
∫
X,Nilp

: ShvNilp(BunG) → Vect preserves compact objects,

Assumption 5.1 is a consequence of Assumption 5.2.

Remark 5.4. By [GR25], Assumption 5.2 is true when G is semisimple and σ ∈ LocǦ(k) is (geometrically)
irreducible. Unfortunately, in our application §6, we are interested in the case G = GLn×GLn−1, which is
not semisimple. We will loosen Assumption 5.2 in §5.3.

Until the end of §5.2.2, we assume Assumption 5.2. In this case, there is a natural choice of ξσ,I which
we are going to explain now.

Note that the diagram (5.4) naturally factors as

QLisse(CI) QLisse(CI)

ShvNilp(BunG)⊗QLisse(CI) ShvNilp(BunG)⊗QLisse(CI)

QLisse(CI) QLisse(CI)

(−⊗Lσ)⊗id

−⊗V I
σ ⟨−dI⟩

(−⊗Lσ)⊗idησ,I

∫
X,Nilp

⊗id

TV I⟨−dI⟩

∫
X,Nilp

⊗id
ηc,Nilp

id

. (5.8)

Here, the natural transformation ησ,I is the natural map coming from the Hecke eigen-property of Lσ:

ησ,I : −⊗ (Lσ ⊠ V I
σ ⟨−dI⟩) ∼= −⊗ TV I⟨−dI⟩(Lσ ⊠ kCI ).

One easily checks that

ηac,σ = ηc,Nilp ◦ ησ,I . (5.9)

By Assumption 5.2, all vertical maps in (5.8) preserve compact objects. Therefore, by the formalism of
Definition 2.2, the diagram (5.8) induces a factorization of the diagram (5.5):

trQLisse(CI)(−⊗ V I
σ ⟨−dI⟩,QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)((Frob×id)! ◦ TV I⟨−dI⟩,ShvNilp(BunG)⊗QLisse(CI)) lI,!(ICV I |ShtG,I
)⟨−dI⟩

trQLisse(CI)(id,QLisse(CI)) kCI

trQLisse(CI )(η
(1)
σ,I)

∼

ξσ,I

LTSerre

∼

η
(1)
c,Nilp

trSht,CI (c)

∼

. (5.10)

Here, the upper commutative diagram can be taken as the definition of the map ξσ,I . The lower commutative
diagram is Theorem 4.9. By (5.9), we know that the outer square of (5.10) is the square in (5.5). This gives
the desired identity zc,σ = trSht,CI (c) ◦ ξσ,I .

5.2.3. Refinement. Note that lI,!(ICV I |ShtG,I
) = 0 unless the central characters of different components of

V I ∈ Rep(ǦI) add up to zero, which we assume in this section. In this case, all the constructions above
make sense after adding a superscript e ∈ π0(BunG) ∼= π1(G), which means restricting to the connected
component BuneG ⊂ BunG. This gives us refined notions including Hecke eigensheaf on the connected
component Le

σ = Lσ|Bune
G
, cohomological correspondence

ce ∈ CorrHke
G,I ,ICV I ⟨−dI⟩(PX ⊠ kCI ,PX ⊠ kCI ),
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Hecke action on the geometric isotypic part

aec,σ = ace,σ := V I
σ ⟨−dI⟩ ⊗

∫
X,Nilp

Le
σ →

∫
X,Nilp

Le
σ,

isotypic part map

ξeσ,I : V I
σ → lI,!(ICV I |ShteG,I

), (5.11)

the fake special cycle classes

zec,σ : V I
σ ⟨−dI⟩ → kCI (5.12)

constructed from aec,σ, and the identity

zec,σ = trSht,CI (c) ◦ ξeσ,I . (5.13)

5.3. Isotypic part of special cycle classes II. In this section, we will generalize the technique in §5.2.2
to general split reductive groups G. Let Z(G) be the center of G and S = G/[G,G]. We have a natural map
on the Langlands dual groups Š → Ǧ. Define Shvtriv(BunS) ⊂ ShvNilp(BunS) to be the direct summand
containing the constant sheaf kBunS

. We have an obvious map f : BunG → BunS .
The main difference between this section and §5.2.2 is that we replace Assumption 5.2 by the following

which we assume throughout §5.3:

Assumption 5.5. The functor f∗(−)⊗ Lσ : Shvtriv(BunS)→ ShvNilp(BunG) preserves compact objects.

Remark 5.6. By [GR25], Assumption 5.5 is true whenever σ ∈ LocǦ(k) is (geometrically) irreducible.

5.3.1. Construction of the isotypic part. In this section, we are going to construct the map (5.6) for V I ∈
Rep(ǦI) and σ ∈ LocarithǦ (k), which only depends on the choice of a Hecke eigensheaf Lσ ∈ ShvNilp(BunG)
with a Weil sheaf structure compatible with that of σ.

Consider the functor (−)σ : Rep(ǦI) → Shv(HkS,I) defined by V I 7→ V I
σ . We explain the notation

as follows: Note that HkS,I =
∐

λS,I∈X∗(S)I HkS,λS,I
. When V I admits a unique central character λS,I ∈

X∗(Š)I , we abuse the notation and denote V I
σ = l∗S,IV

I
σ |HkS,λS,I

in which lS,I : HkS,I → CI is the map

remembering only the legs. In the expression, the later V I
σ is the local system V I

σ ∈ QLisse(CI) while the
former V I

σ is a sheaf V I
σ ∈ Shv(HkS,λS,I

) ⊂ Shv(HkS,I). The meaning of V I
σ will be clear from the context.

In general, V I is a direct sum of representations with different central characters. We take the direct sum
of the construction above for each direct summand of V I .

When G is split reductive but not necessarily semisimple, it is necessary to make the refinement in §5.2.3.
We will fix e ∈ π0(BunG) until the end of this section. We use e ∈ π0(BunS) to denote the image of e under
the map π0(BunG)→ π0(BunS). From now on, without loss of generality, we always assume V I ∈ Rep(ǦI)
is irreducible with highest weight λI and central character λS,I = (λS,1, · · · , λS,r) ∈ X∗(S)I . Moreover, we
can assume ∑

i∈I
λS,i = 0 (5.14)

since otherwise ShtG,λI
= ∅.

Consider the correspondence

BunS ×CI HkS,I BunS ×CI
←−
h S,I

−→
h S,I

.

Define

TV I
σ
: Shv(BunS ×CI)→ Shv(BunS ×CI)

by

TV I
σ
(−) :=

−→
h S,I,!(

←−
h ∗S,I(−)⊗ V I

σ )

where V I
σ ∈ Shv(HkG,λS,I

). This functor preserves the subcategory Shvtriv(BunS)⊗QLisse(CI) and induces
a functor

TV I
σ
: Shvtriv(BunS)⊗QLisse(CI)→ Shvtriv(BunS)⊗QLisse(CI).
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We have a natural transformation

Shvtriv(BunS)⊗QLisse(CI) Shvtriv(BunS)⊗QLisse(CI)

ShvNilp(BunG)⊗QLisse(CI) ShvNilp(BunG)⊗QLisse(CI)

TV I
σ

(f∗(−)⊗Lσ)⊗id (f∗(−)⊗Lσ)⊗idησ

TV I

(5.15)

To define the natural transformation ησ, we consider the diagram

BunG×CI HkG,λI
BunG×CI

BunS ×CI HkS,λS,I
BunS ×CI

f×id fHk

←−
h I

−→
h I

f×id
←−
h S,I

−→
h S,I

(5.16)

in which
←−
h S,I and

−→
h S,I are isomorphisms, the natural transformation ησ is defined as

((f∗(−)⊗ Lσ)⊗ id) ◦ TV I
σ
= (f × id)∗(

−→
h S,I,!(

←−
h ∗S,I(−)⊗ V I

σ ))⊗ (Lσ ⊠ kCI )

∼= (f × id)∗(
−→
h S,I,!

←−
h ∗S,I(−))⊗ (Lσ ⊠ V I

σ )

∼= (f × id)∗(
−→
h S,I,!

←−
h ∗S,I(−))⊗

−→
h I,!(

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I )

∼=
−→
h I,!(

−→
h ∗I(f × id)∗

−→
h S,I,!

←−
h ∗S,I(−)⊗

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I )

∼=
−→
h I,!(f

∗
Hk

−→
h ∗S,I
−→
h S,I,!

←−
h ∗S,I(−)⊗

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I )

∼=
−→
h I,!(f

∗
Hk

←−
h ∗S,I(−)⊗

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I )

∼=
−→
h I,!(

←−
h ∗I((f × id)∗(−)⊗ Lσ ⊠ kCI )⊗ ICV I )

= TV I ◦ ((f∗(−)⊗ Lσ)⊗ id)

.

Adding a Frobenius twist, we get a natural transformation

η(1)σ : ((f∗(−)⊗ Lσ)⊗ id) ◦ (Frob×id)! ◦ TV I
σ
→ (Frob×id)! ◦ TV I ◦ ((f∗(−)⊗ Lσ)⊗ id).

Since the vertical maps in (5.15) preserve compact objects by Assumption 5.5, by Definition 2.2, we get the
left vertical map of the following commutative diagram

trQLisse(CI)((Frob×id)! ◦ TV I
σ
,Shvtriv(Bun

e
S)⊗QLisse(CI)) V I

σ

trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(Bun
e
G)⊗QLisse(CI)) lI,!(ICV I |ShteG,I

)

LTtrue

∼

trQLisse(CI )(η
(1)
σ ) ξeσ,I

LTSerre

∼

. (5.17)

Here, the map ξeσ,I is defined such that the diagram above is commutative. We need to explain the
isomorphism

LTtrue : trQLisse(CI)((Frob×id)! ◦ TV I
σ
,Shvtriv(Bun

e
S)⊗QLisse(CI))

∼→ V I
σ . (5.18)

The inclusion

ιS,triv : Shvtriv(Bun
e
S)→ Shv(BuneS)

admits a continuous right adjoint

ιS,triv,R : Shv(BuneS)→ Shvtriv(Bun
e
S),

which is the composition of the Beilinson’s spectral projector ιS,R : Shv(BuneS) → ShvNilp(Bun
e
S) and the

projection to the direct summand Shvtriv(Bun
e
S) ⊂ ShvNilp(Bun

e
S). The category Shvtriv(Bun

e
S) is self-dual

under the Verdier duality with unit

uS = ιS,triv,R(∆S,∗ωBune
S
) ∈ Shvtriv(Bun

e
S)
⊗2

and counit

evS = Γ▲ ◦∆!
S : Shvtriv(Bun

e
S)
⊗2 → Vect.
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Here ∆S : BuneS → BuneS ×BuneS is the diagonal map, and Γ▲ : Shv(BuneS)→ Vect is the unique continuous
functor whose restriction to compact objects is Γ. This is a particular case of the renormalized functor of
direct image, which is denoted f▲ in [AGK+22c, §A.2.3].

The map LTtrue is defined as

LTtrue : trQLisse(CI)((Frob×id)! ◦ TV I
σ
,Shvtriv(Bun

e
S)⊗QLisse(CI))

∼=pr2,▲(∆S × id)!(FrobBune
S
×id)∗ ◦ T(V I⊠triv)σ (ιS,trivιS,triv,R∆S,∗ωBune

S
⊠ kCI )

→pr2,▲(∆S × id)!(FrobBune
S
×id)∗ ◦ T(V I⊠triv)σ (∆S,∗ωBune

S
⊠ kCI )

∼=lS,I,∗(V
I
σ ⊗ ωShteS,λS,I

)

∼=lS,I,∗(V
I
σ |ShteS,λS,I

)

. (5.19)

Here, pr2 : BunS ×CI → CI is the projection to the second coordinate, the second map uses the adjunction
ιS,trivιS,triv,R → id, the map lS,I : ShtS,I → CI is the map remembering only the legs. The map LTtrue is a
special case of the refined true local term map defined in [GV24, §4.11] in which the same map is denoted
by LTtrue

c,▲ .

Note that there is a natural map V I
σ → lS,I,∗(V

I
σ |ShteS,λS,I

) induced by (l∗S,I , lS,I,∗)-adjunction, which

realizes V I
σ as a direct summand of the later. One easily checks that the map (5.19) factors through V I

σ

and defines the isomorphism (5.18). This explains the construction of the σ-isotypic part ξeσ,I : V I
σ →

lI,!(ICV I |ShteG,I
).

The σ-isotypic part map ξeσ,I admits a less canonical but equivalent and simpler construction, which is

more convenient to use. Instead of considering the map f : BunG → BunS , one chooses a point c ∈ C(Fq)
and consider the map fc = (−)c ◦ f : BunG → [∗/S] where (−)c : BunS → [∗/S] is taking stalk at c ∈ C. In
this case, one replaces the diagram (5.16) by

BunG×CI HkG,λI
BunG×CI

[∗/S]× CI [∗/S]× CI [∗/S]× CI

fc×id fc,Hk

←−
h I

−→
h I

fc×id

id
tλS,I

(5.20)

where tλS,I
(E0, cI) = (E0 ⊗O(−λS,I · cI)c, cI) ∈ [∗/S]× CI . Define

Tc,V I
σ
= tλS,I ,!(−⊗ V I

σ ) : Shv([∗/S])⊗QLisse(CI)→ Shv([∗/S])⊗QLisse(CI).

In this case, the diagram (5.15) can be composed with the upper square in the following diagram, and we
arrive at

Shv([∗/S])⊗QLisse(CI) Shv([∗/S])⊗QLisse(CI)

Shvtriv(Bun
e
S)⊗QLisse(CI) Shvtriv(Bun

e
S)⊗QLisse(CI)

ShvNilp(Bun
e
G)⊗QLisse(CI) ShvNilp(Bun

e
G)⊗QLisse(CI)

(−)∗c⊗id

Tc,V I
σ

(−)∗c⊗id
ηe
c,S,σTV I

σ

(f∗(−)⊗Lσ)⊗id (f∗(−)⊗Lσ)⊗idησ

TV I

(5.21)

Here, the natural transformation ηec,S,σ is the obvious one. We denote ηec,σ = ησ ◦ηec,S,σ. Since all the vertical
maps in (5.21) preserves compact objects, by the formalism of Definition 2.2, we arrive at a commutative
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square

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ
,Shv([∗/S])⊗QLisse(CI)) V I

σ

trQLisse(CI)((Frob×id)! ◦ TV I
σ
,Shvtriv(Bun

e
S)⊗QLisse(CI)) V I

σ

trQLisse(CI)((Frob×id)! ◦ TV I ,ShvNilp(Bun
e
G)⊗QLisse(CI)) lI,!(ICV I |ShteG,I

)

LTtrue

∼

trQLisse(CI )(η
e(1)
c,S,σ) id

LTtrue

∼

trQLisse(CI )(η
(1)
σ ) ξeσ,I

LTSerre

∼

(5.22)

Here the definition of the top horizontal isomorphism LTtrue is similar to but simpler than (5.18). The
commutativity of the upper square follows from a routine generalization of [GV24, Theorem0.4(b)(i)] to
cohomological correspondences with kernel. Therefore, the outer square of (5.22) gives a simpler definition
of the map ξeσ,I : V I

σ → lI,!(ICV I |ShteG,I
).

5.3.2. Restriction of special cycle classes to the isotypic part. Keep the same assumptions as in the previous
section. Suppose we are given an affine smooth G-variety X and a cohomological correspondence

c ∈ CorrHkG,I ,ICV I ⟨−dI⟩(PX ⊠ kCI ,PX ⊠ kCI ),

we can consider the restriction of the geometric Shtuka construction of special cohomological correspondence
trSht,CI (c) : lI,!(ICV I |ShtG,I

⟨−dI⟩)→ kCI along the isotypic part map ξeσ,I : V I
σ → lI,!(ICV I |ShteG,I

), which is

the composition

trSht,CI (c) ◦ ξeσ,I : V I
σ ⟨−dI⟩ → kCI .

Let us revisit its construction. Consider the diagram

Shv([∗/S])⊗QLisse(CI) Shv([∗/S])⊗QLisse(CI)

ShvNilp(BunG)⊗QLisse(CI) ShvNilp(BunG)⊗QLisse(CI)

QLisse(CI) QLisse(CI)

(f∗
c (−)⊗L

e
σ)⊗id

Tc,V I
σ ⟨−dI⟩

(f∗
c (−)⊗L

e
σ)⊗id

ηe
c,σ

∫
X,Nilp,I

TV I⟨−dI⟩

∫
X,Nilp,Iηc,Nilp

id

. (5.23)

Since all the vertical maps in the diagram above preserve compact objects, applying the formalism in Defi-
nition 2.2, we arrive at the left column of the commutative diagram

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ ⟨−dI⟩,Shv([∗/S])⊗QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)((Frob×id)! ◦ TV I⟨−dI⟩,ShvNilp(Bun
e
G)⊗QLisse(CI)) lI,!(ICV I |ShteG,I

⟨−dI⟩)

trQLisse(CI)(id,QLisse(CI)) kCI

LTtrue

∼

trQLisse(CI )(η
e(1)
c,σ ) ξeσ,I

LTSerre

∼

trQLisse(CI )(η
(1)
c,Nilp) trSht,CI (c)

∼

(5.24)

Define

ηceσ := ηc,Nilp ◦ ηec,σ. (5.25)

This gives the identity

trSht,CI (c) ◦ ξeσ,I = trQLisse(CI)(η
(1)
ceσ

). (5.26)

We give another description of the natural transformation ηceσ . Note that∫
X,Nilp,I

◦((f∗c (−)⊗ Le
σ)⊗ id) ∼= Γc(−⊗ fc,!(PX ⊗ Le

σ))⊗ id.
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We claim that the natural transformation ηceσ comes from a cohomological correspondence ceσ via the formal-
ism in §2.2.6 where

ceσ ∈ Corr[∗/S]×CI ,V I
σ ⟨−dI⟩(fc,!(PX ⊗ Le

σ)⊠ kCI , fc,!(PX ⊗ Le
σ)⊠ kCI )

= Hom0(V I
σ ⟨−dI⟩ ⊗ t∗λS,I

(fc,!(PX ⊗ Le
σ)⊠ kCI ), fc,!(PX ⊗ Le

σ)⊠ kCI )
(5.27)

constructed as:

V I
σ ⟨−dI⟩ ⊗ t∗λS,I

(fc,!(PX ⊗ Le
σ)⊠ kCI ) ∼= t∗λS,I

(fc × id)!(PX ⊗
−→
h I,!(

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I ⟨−dI⟩))

∼= t∗λS,I
(fc × id)!

−→
h I,!(

−→
h ∗I(PX ⊠ kCI )⊗

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I ⟨−dI⟩)

∼= (fc × id)!
←−
h I,!(

−→
h ∗I(PX ⊠ kCI )⊗

←−
h ∗I(Lσ ⊠ kCI )⊗ ICV I ⟨−dI⟩)

∼= (fc × id)!(
←−
h I,!(

−→
h ∗I(PX ⊠ kCI )⊗ ICV I ⟨−dI⟩)⊗ (Lσ ⊠ kCI ))

→ fc,!(PX ⊗ Lσ)⊠ kCI

(5.28)

in which the last step uses the cohomological correspondence c :
←−
h I,!(

−→
h ∗I(PX ⊠ kCI ) ⊗ ICV I ⟨−dI⟩) →

PX ⊠ kCI .

5.3.3. Fake versus real II. In this section, we would like to generalize the identity (5.13). We work under
the following assumption, which is weaker than Assumption 5.1:

Assumption 5.7. The complex
∫
X,Nilp

Le
σ is perfect.

In this case, we have the fake special cycle classes

zec,σ : V I
σ ⟨−dI⟩ → kCI ,

the special cycle classes
trSht,CI (c) : lI,!(ICV I |ShtG,I

⟨−dI⟩)→ kCI ,

and the isotypic part map
ξeσ,I : V I

σ → lI,!(ICV I |ShteG,I
).

The main result in this subsection is the following:

Proposition 5.8. Assuming Assumption 5.7 and Assumption 5.5, we have zec,σ = trSht,CI (c) ◦ ξeσ,I .
Proof of Proposition 5.8. The basic idea is to replace the axillary category Shv([∗/S]) by Vect, and we will
get back to the situation in §5.2.2. As a naive tempt, we consider the diagram

QLisse(CI) QLisse(CI)

Shv([∗/S])⊗QLisse(CI) Shv([∗/S])⊗QLisse(CI)

QLisse(CI) QLisse(CI)

−⊗V I
σ ⟨−dI⟩

p∗
c⊗id p∗

c⊗idηpc
Tc,V I

σ ⟨−dI⟩

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id (

∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗idηceσ

id

(5.29)

Where we use the map pc : [∗/S] → ∗. Here, the lower square is the outer square of (5.23), the natural
transformation in the upper square is the obvious one.

Pretending that the functor p∗c preserves compact objects, one would hope for a commutative diagram

trQLisse(CI)(−⊗ V I
σ ⟨−dI⟩,QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ ⟨−dI⟩,Shv([∗/S])⊗QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)(id,QLisse(CI)) kCI

∼

trQLisse(CI )(η
(1)
pc

) id

LTtrue

∼

trQLisse(CI )(η
(1)
ceσ

) trSht,CI (c)◦ξeσ,I

∼

. (5.30)
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Since ηceσ ◦ ηpc = ηae
c,σ

, we get the desired identity in Proposition 5.8. However, the functor p∗c does not
preserve compact objects. We cannot directly apply the formalism in Definition 2.2.

We bypass this point by considering the category Shv([∗/S])ren, which is the renormalization of Shv([∗/S])
such that constructible complexes are compact. There is a fully faithful embedding ren : Shv([∗/S]) →
Shv([∗/S]ren) preserving compact objects. We refer to [AGK+22c, §F.5] for a thorough introduction to this
renormalized category.

One can bypass the problem by considering the diagram

QLisse(CI) QLisse(CI)

Shv(∗/S)ren ⊗QLisse(CI) Shv(∗/S)ren ⊗QLisse(CI)

Shv(∗/S)⊗QLisse(CI) Shv(∗/S)⊗QLisse(CI)

QLisse(CI) QLisse(CI)

−⊗V I
σ ⟨−dI⟩

p∗
c⊗id p∗

c⊗idηpc
Tc,V I

σ ⟨−dI⟩

Tc,V I
σ ⟨−dI⟩

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id

ren⊗id

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id

ren⊗idηren

ηceσ

id

(5.31)

in which all the natural transformations are the obvious ones. In this diagram, all vertical arrows preserve
compact objects. We can apply the formalism in Definition 2.2 to obtain the diagram

trQLisse(CI)(−⊗ V I
σ ⟨−dI⟩,QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ ⟨−dI⟩,Shv(∗/S)ren ⊗QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ ⟨−dI⟩,Shv(∗/S)⊗QLisse(CI)) V I

σ ⟨−dI⟩

trQLisse(CI)(id,QLisse(CI)) kCI

∼

trQLisse(CI )(η
(1)
pc

) id

LTtrue

∼

LTtrue

∼

trQLisse(CI )(η
(1)
ren)

trQLisse(CI )(η
(1)
ceσ

) trSht,CI (c)◦ξeσ,I

id

∼

(5.32)

Here, the commutativity of the upper square follows from a direct generalization of [GV24, Theo-
rem0.4(b)(i)] to cohomological correspondences with kernel. The commutativity of the middle square follows
from the same kind of generalization of [GV24, Proposition 4.12]. The bottom square is the outer square of
(5.24).

By the commutativity of (5.32), we are reduced to show

trQLisse(CI)(η
(1)
ceσ

) ◦ trQLisse(CI)(η
(1)
ren)
−1 ◦ trQLisse(CI)(η

(1)
pc

) = zec,σ. (5.33)

For this purpose, consider the strictly commutative diagram

QLisse(CI)

Shv(∗/S)⊗QLisse(CI) Shv(∗/S)ren ⊗QLisse(CI)

QLisse(CI)

p∗
c⊗id

ren⊗id

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id

. (5.34)



SPECIAL CYCLE ON SHTUKAS AND CATEGORICAL TRACE 47

Moreover, each category in the diagram is equipped with an endomorphism which has been specified in
(5.31), among which the only new natural transformation is

Shv(∗/S)ren ⊗QLisse(cI) Shv(∗/S)ren ⊗QLisse(cI)

QLisse(CI) QLisse(CI)

Tc,V I
σ ⟨−dI⟩

(
∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id (

∫
X,Nilp

◦(f∗
c (−)⊗L

e
σ))⊗id

ηceσ,ren

id

(5.35)

such that ηceσ,ren ◦ ηren = ηceσ .

By Assumption 5.7, we know (
∫
X,Nilp

◦f∗c (−)⊗Le
σ)(k[∗/S]) ∈ Vect is compact. Since k[∗/S] ∈ Shv([∗/S])ren

is a compact generator, we know all maps in (5.34) preserve compact objects. Therefore, it gives a commu-
tative diagram

trQLisse(CI)(−⊗ Vσ⟨−dI⟩,QLisse(CI))

trQLisse(CI)((Frob×id)! ◦ Tc,V I
σ ⟨−dI⟩,Shv([∗/S])⊗QLisse(CI)) trQLisse(CI)((Frob×id)! ◦ Tc,V I

σ ⟨−dI⟩,Shv([∗/S])ren ⊗QLisse(CI))

trQLisse(CI)(id,QLisse(CI))

trQLisse(CI )(η
(1)
pc

)

trQLisse(CI )(η
(1)
ren)

trQLisse(CI )(η
(1)
ceσ

)

trQLisse(CI )(η
(1)
ceσ,ren

)

.

(5.36)
Since we have ηceσ,ren ◦ ηpc

= ηae
c,σ

, we know

trQLisse(CI)(η
(1)
ceσ

) ◦ trQLisse(CI)(η
(1)
ren)
−1 ◦ trQLisse(CI)(η

(1)
pc

)

= trQLisse(CI)(η
(1)
ceσ,ren

) ◦ trQLisse(CI)(η
(1)
pc

)

= trQLisse(CI)(η
(1)
ae
c,σ

)

=zec,σ

.

This concludes the proof of Proposition 5.8.
□

Remark 5.9. Suppose one replaces LTtrue by LTSerre for all the horizontal maps in (5.32), we do not know

how to prove the commutativity of the top square.13 This is the reason that we use LTtrue instead of LTSerre

even though the latter seems more natural in our setting.

5.4. Generically middle-dimensional case. In this section, we study the case dI = 0 and V I ∈ Rep(ǦI)♡,
which means that the cohomological correspondence is c ∈ CorrHkG,I ,ICV I

(PX ⊠ kCI ,PX ⊠ kCI ). In this
case, the geometric trace is trSht,CI (c) : lI,!(ICV I |ShtG,I

) → kCI . We develop a tool to study its restriction

to the isotypic part trSht,CI (c) ◦ ξeσ,I : V I
σ → kCI . In this section, we assume V I ∈ Rep(ǦI)♡ is irreducible

with highest weight λI whose central character λS,I ∈ X∗(S)
I satisfies

∑
i∈I λS,i = 0.

In this case, taking stalk at cI ∈ CI induces an injection

(−)cI : Hom0(V I
σ , kCI )→ Hom0(V I

σ,cI , k).

Therefore, we only need to understand the induced map on the stalk (trSht,CI (c) ◦ ξeσ,I)cI : V I
σ,cI → k.

Note that there is another natural map

trSht,CI (ceσ,cI ) : V
I
σ,cI → k.

We now explain this map. Consider the restriction along cI → CI of the cohomological correspondence
(5.27) which is

ceσ,cI ∈ Corr[∗/S],V I
σ,cI

(fc,!(PX ⊗ Le
σ)⊠ kCI , fc,!(PX ⊗ Le

σ)⊠ kCI ).

Since
∑

i∈I λS,i = 0, we know that the underlying correspondence of ceσ,cI is the identity correspondence on

[∗/S]. The geometric trace above is the map

trSht,CI (ceσ,cI ) : V
I
σ,cI
∼= Fun([∗/S(Fq)])⊗ V I

σ,cI
∼= Γc(k[∗/S(Fq)]

)⊗ V I
σ,cI → k

13It might be possible to generalize the argument in [AGK+22a, §6] and show that LTtrue = LTSerre.
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in which we are using the identification Fun([∗/S(Fq)]) ∼= k given by evaluation at the unique point.14 Note
that the trace construction makes sense since fc,!(PX ⊗ Le

σ) is constructible by Assumption 5.5.
We have the following proposition:

Proposition 5.10. We have (trSht,CI (c) ◦ ξeσ,I)cI = trSht,CI (ceσ,cI ) ∈ Hom0(V I
σ,cI , k).

Proof of Proposition 5.10. We first note that there is a commutative diagram

tr(Frob! ◦(−⊗ V I
σ,cI ),Shv([∗/S])) V I

σ,cI

tr(id,Vect) k

tr(η
(1)

ce
σ,cI

)

LTSerre

∼

trSht,CI (c
e
σ,cI

)

∼

. (5.37)

in which that the local term map LTSerre is defined by

LTSerre : tr(Frob! ◦(−⊗ V I
σ,cI ),Shv([∗/S])) ∼= Γc(∆

∗
c(Frob×id)!(∆c,!k[∗/S] ⊗ V I

σ,cI ))

∼= Γc(k[∗/S(Fq)]
)⊗ V I

σ,cI

∼= Fun([∗/S(Fq)])⊗ V I
σ,cI

∼= V I
σ,cI

.

Here we use the map ∆c : [∗/S]→ [∗/S]× [∗/S], and we use the isomorphism Fun([∗/S(Fq)]) ∼= k given by
evaluation at the unique point.

On the other hand, by restricting the outer square of (5.24) to cI , we have a commutative diagram

tr(Frob! ◦(−⊗ V I
σ,cI ),Shv([∗/S])) V I

σ,cI

tr(id,Vect) k

tr(η
(1)

ce
σ,cI

)

LTtrue

∼

(trSht,CI (c)◦ξeσ,I)cI

∼

(5.38)

in which the local term map LTtrue is defined by

LTtrue : tr(Frob! ◦(−⊗ V I
σ,cI ),Shv([∗/S])) ∼= Γ▲(∆

!
c(Frob×id)∗(∆c,∗ω[∗/S] ⊗ V I

σ,cI ))

∼= Γ(ω[∗/S(Fq)])⊗ V I
σ,cI

∼= Fun([∗/S(Fq)])⊗ V I
σ,cI

∼= V I
σ,cI

.

In which we are also using the isomorphism Fun([∗/S(Fq)]) ∼= k given by evaluation at the unique point for
the last step. Indeed, the inverse of this map is the adjunction map k → Γ(ω[∗/S(Fq)]).

By [AGK+22a, Theorem6.1.4], we know LTtrue = LTSerre.15 Combining this with (5.37)(5.38), we obtain

(trSht,CI (c) ◦ ξeσ,I)cI = tr(η
(1)
ce
σ,cI

) = trSht,CI (ceσ,cI ).

□

5.5. Diagonal cycles. In this section, we study the restriction of the diagonal cycle on the isotypic part.

5.5.1. Conjectural description. We take G = H ×H, X = H\H ×H, and σ = (σH , c∗σH) ∈ LocarithȞ (k) ×
LocarithȞ (k) where c : Ȟ → Ȟ is the Cartan involution (same letter for the induced map c : LocȞ → LocȞ).

The Ȟ-local system c∗σH is characterized by V ∗H,c∗σ
∼= VH,σ for any irreducible VH ∈ Rep(Ȟ).16 In this case,

we take a Hecke eigensheaf LσH
∈ ShvNilp(BunH) for σH . One can consider D(LσH

) ∈ ShvNilp(BunH) which

14Note that this isomorphism is |S(Fq)| times the natural adjunction map Γc(k[∗/S(Fq)]) → k.
15Strictly speaking, there is no tensor product −⊗ V I

σ,cI
involved in [AGK+22a, Theorem6.1.4]. However, it is easy to see

that this factor is innocuous and goes through the proof in loc.cit.
16Strictly speaking, we have VH,c∗σ ∼= c∗VH,σ . However, one has the natural isomorphism c∗VH

∼= V ∗
H given by the

Geometric Satake equivalence.



SPECIAL CYCLE ON SHTUKAS AND CATEGORICAL TRACE 49

is naturally a Hecke eigensheaf with eigenvalue c∗σH . Here, D : Shv(BunG)c → Shv(BunG)
op
c is the Verdier

duality. We take

Lσ = LσH
⊠ D(LσH

) ∈ ShvNilp(BunG).

Fix e ∈ π1(H) ∼= π0(BunH). We use BuneH ⊂ BunH and BuneG ⊂ BunG to denote the corresponding
connected component. Define SH = H/[H,H], then S = SH × SH . Consider irreducible representation
VH ∈ Rep(ȞI) with highest weight λH,I . Take V

I = V I
H ⊠V I

H ∈ Rep(ǦI). Assume V I
H has central character

λSH ,I = (λSH ,1, · · · , λSH ,r) ∈ X∗(SH)I and
∑

i∈I λSH ,i = 0.
Define Le

σH
= LσH

|Bune
H

and Le
σ = Lσ|Bune

G
. We have an isotypic part map

ξeσ,I = ξeσH ,I ⊗ ξec∗σH ,I : V I
H,σH

⊗ V I∗
H,σH

∼= V I
σ → lI,!(ICV I |ShteG,I

) ∼= lH,I,!(ICV I
H
|ShteH,I

)⊗ lH,I,!(ICV I
H
|ShteH,I

).

Take the diagonal cohomological correspondence

c = ∆Hk,I,![HkH,λH,I
/BunH ×CI ] ∈ CorrHkG,I ,ICV I

(PX ⊠ kCI ,PX ⊠ kCI )

as in Theorem 3.3. We would like to understand the restriction of intersection pairing on the isotypic part

trSht,CI (c) ◦ ξeσ,I : V I
σ → kCI .

Note that there is the natural evaluation map evV I
H,σH

: V I
σ
∼= V I

H,σH
⊗ V I∗

H,σH
→ kCI . It is natural to ask

about the relation between these two maps. The following is a conjectural answer:

Conjecture 5.11. We have trSht,CI (c) ◦ ξeσ,I = tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))) · evV I

H,σH

.

We need to explain the meaning of the number tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))). When H is semisimple,

assuming Assumption 5.2, the complex Γc(Le
σH
⊗ D(Le

σH
)) is perfect, hence, the trace is a well-defined

number. When H is not semisimple, the vector space Γc(Le
σH
⊗ D(Le

σH
)) is usually infinite-dimensional. In

this case, we assume Assumption 5.5, and the sum tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))) will be convergent. In fact,

consider the map fc,H : BunH → [∗/SH ] and the diagonal map ∆c : [∗/SH ]→ [∗/S]. Since the functor∫
X,Nilp

◦(f∗c (−)⊗ Lσ) ∼= Γc(−⊗∆c,!fc,H,!(Le
σH
⊗ D(Le

σH
))) : Shv([∗/S])→ Vect

preserves compact objects, we know fc,H,!(Le
σH
⊗ D(Le

σH
)) ∈ Shv([∗/SH ]) is constructible. Note that

fc,H,!(Le
σH
⊗ D(Le

σH
))

is a constant sheaf. Indeed, consider the Cartesian diagram

[∗/Z(H)]× BunH BunH

[∗/Z(H)]× [∗/SH ] [∗/SH ]

m

id×fc,H fc,H

mc

where m is induced by the closed embedding [∗/Z(H)] ⊂ BunZ(H) and the natural action of BunZ(H) on
BunH , mc is induced by the natural map [∗/Z(H)]→ [∗/SH ] and the natural multiplication on [∗/SH ]. By
base change and Hecke eigen-property of LσH

, one has

m∗cfc,H,!(Le
σH
⊗ D(Le

σH
)) ∼= (id× fc,H)!m

∗(Le
σH
⊗ D(Le

σH
)) ∼= k[∗/Z(H)] ⊠ fc,H,!(Le

σH
⊗ D(Le

σH
)).

This implies that fc,H,!(Le
σH
⊗ D(Le

σH
)) is constant.

Therefore, consider the map i : ∗ → [∗/SH ], we have

Γc(Le
σH
⊗ D(Le

σH
)) ∼= i∗fc,H,!(Le

σH
⊗ D(Le

σH
))⊗ Γc([∗/SH ])

in which the first factor is a perfect complex. Therefore, we have

tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))) = tr(Frob, i∗fc,H,!(Le

σH
⊗ D(Le

σH
))) · |SH(Fq)|−1, (5.39)

which is a well-defined number.
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5.5.2. Conjectural description of cohomological correspondence. By Proposition 5.10, to prove Conjecture
5.11, we only need to understand the cohomological correspondence

ceσ,cI ∈ Corr[∗/S],V I
σ,cI

(∆c,!fc,H,!(Le
σH
⊗ D(Le

σH
)),∆c,!fc,H,!(Le

σH
⊗ D(Le

σH
)))

whose general definition is given in §5.4. Note that there is another natural cohomological correspondence

evV I
H,σH,cI

⊗id ∈ Hom0(V I
σ,cI ⊗∆c,!fc,H,!(Le

σH
⊗ D(Le

σH
)),∆c,!fc,H,!(Le

σH
⊗ D(Le

σH
)))

∼= Corr[∗/S],V I
σ,cI

(∆c,!fc,H,!(Le
σH
⊗ D(Le

σH
)),∆c,!fc,H,!(Le

σH
⊗ D(Le

σH
)))

in which evV I
H,σH,cI

: V I
σ,cI
∼= V I

H,σH ,cI ⊗ V I∗
H,σH ,cI → k is the natural evaluation map. We have the following

conjecture:

Conjecture 5.12. We have ceσ,cI = evV I
H,σH,cI

⊗id.

Proof of Conjecture 5.11 assuming Conjecture 5.12. Note that

(trSht,CI (c) ◦ ξeσ,I)cI = trSht,CI (ceσ,cI )

= trSht,CI (evV I
H,σH,cI

⊗id)

= evV I
H,σH,cI

⊗ trSht,CI (id∆c,!fc,H,!(Le
σH
⊗D(Le

σH
)))

= evV I
H,σH,cI

⊗ tr(Frob, i∗fc,H,!(Le
σH
⊗ D(Le

σH
))) · |SH(Fq)|−1

= tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))) · evV I

H,σH,cI

.

Here, the first identity is Proposition 5.10, the second identity is Conjecture 5.12, the fourth identity follows
from [GV24, Corollary 0.9], the last identity follows from (5.39). Combined with the injectivity of (−)cI :
Hom0(V I

σ , kCI )→ Hom0(V I
σ,cI , k), we get

trSht,CI (c) ◦ ξeσ,I = tr(Frob,Γc(Le
σH
⊗ D(Le

σH
))) · evV I

H,σH

.

□

5.5.3. Evidence for Conjecture 5.12. In this section, we will prove Conjecture 5.12 under Assumption 5.13,
which we can verify in case H = GLn. This provides evidence for Conjecture 5.12.

Recall that for each irreducible representation V ′H ∈ Rep(Ȟ) and V ′ = V ′H ⊠ V ′H ∈ Rep(Ǧ), we have the
diagonal cohomological correspondence cV ′

H
∈ CorrHkG,{1},ICV ′ (PX ⊠ kC ,PX ⊠ kC) which gives a map

acV ′
H
,σ : Γ(V ′H,σH

⊗ V ′H,c∗σH
)⟨2⟩ ⊗

∫
X,Nilp

Lσ →
∫
X,Nilp

Lσ.

Putting all these maps for V ′H ∈ Irr(Rep(Ȟ)) together, one obtains a map

aσ :
⊕

V ′
H∈Irr(Rep(Ȟ))

Γ(V ′H,σH
⊗ V ′H,c∗σH

)⟨2⟩ ⊗
∫
X,Nilp

Lσ →
∫
X,Nilp

Lσ.

Furthermore, one obtains an action map for the free tensor algebra

a⊗σ : (
⊕

V ′
H∈Irr(Rep(Ȟ))

Γ(V ′H,σH
⊗ V ′H,c∗σH

)⟨2⟩)⊗ ⊗
∫
X,Nilp

Lσ →
∫
X,Nilp

Lσ.

We make the following assumption:

Assumption 5.13. The following statements are true:

(1) For every e′ ∈ π1(H), we have dimH0(
∫
X,Nilp

Le′

σ ) = 1;

(2) The map

H∗(a⊗σ )|H0 : H∗((
⊕

V ′
H∈Irr(Rep(Ȟ))

Γ(V ′H,σH
⊗ V ′H,c∗σH

)⟨2⟩)⊗)⊗H0(

∫
X,Nilp

Lσ)→ H∗(

∫
X,Nilp

Lσ)

is surjective.
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The main result in this section is the following:

Proposition 5.14. Under Assumption 5.13, Conjecture 5.12 is true; hence, Conjecture 5.11 is true.

Proof of Proposition 5.14. Since the functor Γc : Shv([∗/S])c → Vect is faithful, we only need to check that

Γc(c
e
σ,cI ) = evV I

H,σH,cI
⊗id ∈ Hom0(V I

σ,cI ⊗
∫
X,Nilp

Le
σ,

∫
X,Nilp

Le
σ).

Note that Γc(c
e
σ,cI ) = aeccI ,σ in which the later is defined in (5.2), we are reduced to show

aeccI ,σ = evV I
H,σH,cI

⊗id ∈ Hom0(V I
σ,cI ⊗

∫
X,Nilp

Le
σ,

∫
X,Nilp

Le
σ). (5.40)

Since
∫
X,Nilp

Le
σ = Γc(Le

σH
⊗ D(Le

σH
)), there is a canonical element

evLe
σ
∈ H0(

∫
X,Nilp

Le
σ)
∗ (5.41)

defined as

evLe
σ
:

∫
X,Nilp

Le
σ
∼= Γc(Le

σH
⊗ D(Le

σH
))→ Γc(ωBune

H
)→ k.

We have the following lemma:

Lemma 5.15. We have ae,∗ccI ,σ evLe
σ
= evLe

σ
⊗ evV I

H,σH,cI
∈ H0(

∫
X,Nilp

Le
σ)
∗ ⊗ V I∗

σ,cI .

Proof of Lemma 5.15. Note that evLe
σ
⊗ evV I

H,σH,cI
= evT

V I
H

,cI
Le
σH

where

evT
V I
H

,cI
Le
σH
∈ Hom0(TV I

H ,cILe
σH
⊗ D(TV I

H ,cILe
σH

), ωBunH
) ∼= Hom0(Γc(TV I

H ,cILe
σH
⊗ D(TV I

H ,cILe
σH

)), k)

is the natural map. The claim follows from the following fact: For any F ∈ Shv(BunH)c, evaluating ηccI on
F ⊠ D(F) gives a natural map

ηccI (F ⊠ D(F)) : Γc(TV I
H ,cIF ⊗ D(TV I

H ,cIF))→ Γc(F ⊗ D(F)).

This map satisfies ηccI (F ⊠ D(F))∗ evF = evT
V I
H

,cI
F . □

By Lemma 5.15, and Assumption 5.13(1), we know

accI ,σ|H0 = (evV I
H,σH,cI

⊗id)|H0 ∈ Hom(V I
σ,cI ⊗H0(

∫
X,Nilp

Lσ), H
0(

∫
X,Nilp

Lσ)). (5.42)

We have the following lemma:

Lemma 5.16. We have

accI ,σ ◦ a
⊗
σ = a⊗σ ◦ accI ,σ ∈ Hom0(V I

σ,cI ⊗ (
⊕

V ′
H∈Irr(Rep(Ȟ))

Γ(V ′H,σH
⊗ V ′H,c∗σH

)⟨2⟩)⊗ ⊗
∫
X,Nilp

Lσ,

∫
X,Nilp

Lσ).

Here the composition is understood as in §5.1.2.

Proof. Note that we are in the situation of §5.1.3. Indeed, the cohomological correspondences involved
here all come from local special cohomological correspondences. Since the local Plancherel algebra has non-
negative degrees, [LW25, Assumption 4.46] is satisfied if the genus of the curve g(C) ̸= 1. In this case, the
statement is true by the discussion in §5.1.3. One can easily remove the condition g(C) ̸= 1 since the leg is
fixed in one of the Hecke actions. □

Now, (5.40) follows from a combination of (5.42), Lemma 5.16, and Assumption 5.13(2). This concludes
the proof of Proposition 5.14 under Assumption 5.13.

□
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6. Application: higher Rankin–Selberg integrals

In this section, we work towards a proof of Theorem 1.7.

• In §6.1, we review the construction of the σ-isotypic part in the cohomology of Shtukas for G = GLn.
• In §6.2, we study the Rankin–Selberg cycle classes for G = GLn×GLn−1.
• In §6.3, we study the diagonal cycle classes for G = GLn.
• In §6.4, we complete the proof of Theorem 1.7.

6.1. Isotypic part. We first define the σ-isotypic part map (1.22) used in the formulation of Theorem 1.7.
They will be defined using techniques of §5.3.

For G = GLn, we have S = G/[G,G] = Gm. We use BundGLn
⊂ BunGLn

to denote the connected
component consisting of vector bundles of degree d.

We fix a geometrically irreducible Weil local system σn ∈ LocarithGLn
(k). There is an associated Hecke

eigensheaf LFGV
σn

∈ ShvNilp(BunGLn
) constructed in [FGV02]. We refer to [LW25, §7.2] for a summary of its

properties and normalization (which is slightly different from the normalization in [FGV02] by a twist).
In this case, the construction in §5.3 makes sense. Indeed, consider the map fn = det : BunGLn

→ BunGm
.

The following proposition verifies Assumption 5.5.

Proposition 6.1. The functor

f∗n(−)⊗ LFGV
σn

: ShvNilp(BunGm)→ ShvNilp(BunGLn)

preserves compact objects.

The proof will be given in §6.1.1.
For each d ∈ Z and V I ∈ Rep(GLI

n), the construction in §5.3 gives a map

ξdσn,I : V I
σn
→ lI,!(ICV I |ShtdGLn,I

).

In particular, taking V I = Stdϵn, for each ϵ ∈ {±1}r0, we get a map

ξσn,ϵ = (ξdσn,ϵ)d∈Z := (ξdσn,I)d∈Z : σϵ
n →

∏
d∈Z

lI,!(ICStd
ϵ
n
|ShtdGLn,I

). (6.1)

In our application, we consider G = GLn×GLn−1. For geometrically irreducible Weil local system

σ = (σn, σn−1) ∈ LocarithGLn×GLn−1
(k), we consider the functor

fn × fn−1 : BunGLn×GLn−1 → BunG2
m

(6.2)

and use the Hecke eigensheaf

Lσ := LFGV
σn

⊠ LFGV
σn−1

∈ ShvNilp(BunGLn×GLn−1
).

The same construction gives

ξσ,ϵ = (ξ(dn,dn−1)
σ,ϵ )(dn,dn−1)∈Z2 : (σn ⊗ σn−1)

ϵ →
∏

(dn,dn−1)∈Z2

lI,!(IC(Stdn ⊠ Stdn−1)ϵ |Sht(dn,dn−1)

GLn ×GLn−1,I

). (6.3)

This is an enhancement of the map (1.22) which recovers the map (1.22) by taking global section. The
injectivity of the map (1.22) is a consequence of Theorem 6.12.

6.1.1. Proof of Proposition 6.1. In this section, we prove Proposition 6.1. For an irreducible SLn-local system
σn ∈ LocSLn

(k), regarding it as a GLn-local system, the associated Hecke eigensheaf LFGV
σn

descends to a

Hecke eigensheaf LFGV
σn,PGLn

∈ ShvNilp(BunPGLn). That is, consider the map h : BunGLn → BunPGLn , we

have LFGV
σn

∼= h∗LFGV
σn,PGLn

.
We have the following lemma:

Lemma 6.2. For any irreducible SLn-local system σn ∈ LocSLn
(k), the corresponding Hecke eigensheaf

LFGV
σn,PGLn

∈ ShvNilp(BunPGLn
) is compact.
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Proof of Lemma 6.2. This is a direct consequence of [GR25]. To make our result minimally depend on
characteristic zero techniques, we provide an independent proof. Consider the map iσn : ∗ → LocSLn

induced by the point σn ∈ LocSLn
(k). Since LFGV

σn,PGLn
agrees with (iσn

k)∗PWhit up to a cohomological shift,

we only need to show that (iσn
k) ∗ PWhit is compact. Here

PWhit ∈ Shv(BunPGLn
)

is the Whittaker sheaf and

∗ : QCoh(LocSLn
)⊗ Shv(BunPGLn

)→ ShvNilp(BunPGLn
)

is the spectral action. Since iσnk is compact, PWhit is compact, and − ∗ − preserves compact objects, we
know that (iσn

k) ∗ PWhit is compact. This concludes the proof of Lemma 6.2. □

Proof of Proposition 6.1. By tensoring with a rank 1 local system on C, we can assume detσn
∼= kC . By

Theorem 4.1, compactness in Shv and ShvNilp are the same, and we can safely discard the singular support
condition everywhere. Consider the commutative diagram

BunGm
×BunSLn

BunGLn
BunGm

BunGm
×BunPGLn

BunPGLn

m

id×h

fn

h

pr2

in which m(L, En) = En ⊗ L. Since for any F ∈ Shv(BunGLn
) one has m∗m

∗F ∼= m!m
∗F ∼= F ⊗

m!kBunGm ×BunSLn
containing F as a direct summand, we know that the object F is compact whenever

m∗F is compact. Therefore, we only need to check that

m∗ ◦ (f∗n(−)⊗ LFGV
σn

) ∼= [n]∗(−)⊠ h∗LFGV
σn,PGLn

: Shv(BunGm
)→ Shv(BunGm

×BunSLn
)

preserves compact objects. Here [n] : BunGm
→ BunGm

is the n-th power map. This follows from Lemma 6.2
because both [n]∗ : Shv(BunGm

)→ Shv(BunGm
) and h∗ : Shv(BunPGLn

)→ Shv(BunSLn
) preserve compact

objects. □

6.2. Rankin–Selberg cycles. Now we come to study the Rankin–Selberg special cycle classes (1.4). In
particular, we would like to study their restriction along the map (6.3) using tools in §5.3.3.

In this section, we take G = GLn×GLn−1, H = GLn−1, X = H\G. Define L = Γ(σn ⊗ σn−1)⟨1⟩, which
is an odd vector space. Let Lϵ = Lϵ1 ⊗ · · ·⊗Lϵr . Define M = L⊕L∗. We have M⊗r =

⊕
ϵ∈{±1}r L

ϵ. Define

(M⊗r)0 =
⊕

ϵ∈{±1}r0
Lϵ ⊂M⊗r. We would like to understand the elements

(πSht,I,![Sht
d
GLn−1,Std

ϵ
n−1

])σ = πSht,I,![Sht
d
GLn−1,Std

ϵ
n−1

] ◦ ξσ,ϵ = πSht,I,![ShtGLn−1,Std
ϵ
n−1

] ◦ ξ(d,d)σ,ϵ ∈ Lϵ,∗ (6.4)

defined in (1.15). Or slightly weaker, we would like to understand the element

((πSht,I,![ShtGLn−1,Std
ϵ
n−1

])σ)ϵ∈{±1}r0 ∈ (M⊗r)∗0 (6.5)

whose components are defined in (1.16).
Take the cohomological correspondence

cStdϵ
n−1

= πHk,I,![HkGLn−1,Std
ϵ
n−1

/BunGLn−1 ×CI ]

∈
CorrHkGLn ×GLn−1,I ,IC(Stdn ⊠ Stdn−1)ϵ ⟨−r⟩(PX ⊠ kCI ,PX ⊠ kCI )

(6.6)

in Theorem 3.2. In this case, Assumption 2.36 is satisfied by Example 2.38. Therefore, Theorem 3.2 gives
the following:

Proposition 6.3. We have

πSht,I,![ShtGLn−1,Std
ϵ
n−1

] = trSht,CI (cStdϵ
n−1

).

In particular, we have

(πSht,I,![Sht
d
GLn−1,Std

ϵ
n−1

])σ = trSht,CI (cStdϵ
n−1

) ◦ ξ(d,d)σ,ϵ ∈ Lϵ,∗.
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Since Assumption 5.1 is true by Theorem 6.6, we have the fake special cycle classes

z
(d,d)
c
Std

ϵ
n−1

,σ ∈ Lϵ,∗ (6.7)

defined in (5.3) (see refinement in (5.12)). Note that Assumption 5.5 is true by Proposition 6.1, we can apply
Proposition 5.8 and get the following:

Proposition 6.4. We have trSht,CI (cStdϵ
n−1

) ◦ ξ(d,d)σ,ϵ = z
(d,d)
c
Std

ϵ
n−1

,σ ∈ Lϵ,∗.

Combining Proposition 6.3 and Proposition 6.4, we are reduced to understand the fake special cycle classes

z
(d,d)
c
Std

ϵ
n−1

,σ ∈ Lϵ,∗. This is the subject of [LW25], where we recollect the key results below.

Consider
zc

Std
ϵ
n−1

,σ =
∑
d∈Z

z
(d,d)
c
Std

ϵ
n−1

,σ ∈ Lϵ,∗

and
zσ,r :=

∑
ϵ∈{±1}r0

zc
Std

ϵ
n−1

,σ ∈ (M⊗r)∗0 ⊂ (M⊗r)∗. (6.8)

By the definition in (5.3), these elements are defined by

zσ,r(m1 ⊗ · · · ⊗mr) = tr(a⊗(m1 ⊗ · · · ⊗mr) ◦ Frob,
∫
X,Nilp

Lσ) (6.9)

in which the map a⊗ is (6.13).
By Theorem 6.6, the sequence of elements {zσ,•} form a Kolyvagin system in the sense of [LW25, §3]. Note

that the (possibly infinite) sum above involves only finitely many non-zero terms since
∫
X,Nilp

LFGV,d
σn

= 0

for all but finitely many d by Theorem 6.6. This confirms the first claim in Conjecture 1.6 in this setting.
Now we recollect some key properties of this Kolyvagin system. Let K = Stdn ⊠Stdn−1⊕Std∗n ⊠Std∗n−1.

It is equipped with a natural symplectic pairing

ωK = evStdn ⊠ Stdn−1
− evStd∗

n ⊠ Std∗
n−1

(6.10)

in which evStdn ⊠ Stdn−1
: (Stdn ⊠Stdn−1)⊗(Std∗n ⊠Std∗n−1)→ k is the natural evaluation map and similarly

for evStd∗
n ⊠ Std∗

n−1
. This gives rise to a symplectic pairing on the odd vector space M , which we denote by

ωM . Note that symplecticity here means ωM (m1,m2) = ωM (m2,m1) since M is odd. The bilinear form ωM

induces bilinear form ωM∗ by identifying M∗ with M using ωM . This induces a bilinear form ω(M⊗r)∗ on

(M⊗r)∗.
We have the following result:

Theorem 6.5. [LW25, Theorem1.2] We have

ω(M⊗r)∗(zσ,r, zσ,r) = βσ(ln q)
−r

(
d

ds

)r ∣∣∣
s=1/2

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s)

where βσ = (−1)r/2q−n2(g−1)χ−ndetσn−1
(Ω)χ−n+1

detσn
(Ω)ϵ(σn ⊗ σn−1) and

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s) = q2n(n−1)(g−1)(s−1/2)L(σn ⊗ σn−1, s)L(σ
∗
n ⊗ σ∗n−1, s)

is the normalized L-function defined in (1.18).

6.2.1. Geometric result. In this section, we collect all relevant geometric results relating to Rankin–Selberg
integrals for the convenience of readers. Take ϵ = (1), (−1) in (6.6), we have cohomological correspondences

cStdn−1
and cStd∗

n−1
. They give rise to Hecke actions on

∫
X,Nilp

L(d,d)
σ defined in (5.1)

acStdn−1
,σ : L⊗

∫
X,Nilp

L(d,d)
σ →

∫
X,Nilp

L(d+1,d+1)
σ . (6.11)

acStd∗
n−1

,σ : L∗ ⊗
∫
X,Nilp

L(d,d)
σ →

∫
X,Nilp

L(d−1,d−1)
σ . (6.12)

Combining these two actions, we get an action

a⊗ : M⊗ → End(

∫
X,Nilp

Lσ). (6.13)
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Let ωM,X = (−1)n−1ωM .17Define the Clifford algebra Cl(M) to be the quotient of the tensor algebra M⊗

by the two-sided ideal generated by elements of the form m1⊗m2+m2⊗m1−ωM,X(m1,m2). We have the
following result:

Theorem 6.6. [LW25, Theorem7.8] The action map (6.13) factors through the Clifford algebra Cl(M).
Moreover, we have∫

X,Nilp

Ld
σ
∼= (Symd+n(n−1)(g−1) L)⊗ (Ldetσn−1

)Ω−n/2 ⊗ (Ldetσn
)Ω−(n−1)/2⟨(n2 − 2)(g − 1)⟩

for each d ∈ Z. Here, Ldetσn ,Ldetσn−1 ∈ Shv(BunGm) are the Hecke eigensheaves associated to the rank one
local systems detσn,detσn−1.

This theorem has the following corollary:

Corollary 6.7. We have∫
X,Nilp

L−n(n−1)(g−1)σ
∼= (Ldetσn−1)Ω−n/2 ⊗ (Ldetσn)Ω−(n−1)/2⟨(n2 − 2)(g − 1)⟩

as a one-dimensional vector space with Frobenius action. Moreover, the action map (6.13) induces an
isomorphism

Sym• L⊗
∫
X,Nilp

L−n(n−1)(g−1)σ
∼=

∫
X,Nilp

Lσ.

Using the language of [LW25, §3.4], we have the following corollary:

Corollary 6.8. The Cl(M)-module
∫
X,Nilp

Lσ is a lowest weight module with Frobenius eigenvalue on the

lowest weight vector equal to q−n
2(g−1)/2χ−ndetσn−1

(Ω1/2)χ−n+1
detσn

(Ω1/2). Here, χdetσn−1 , χdetσn : Pic(Fq)→ k×

are the Hecke characters associated to local systems detσn−1,detσn.

Remark 6.9. Dually, one has an isomorphism

Sym• L∗ ⊗
∫
X,Nilp

Ln(n−1)(g−1)
σ

∼=
∫
X,Nilp

Lσ

where∫
X,Nilp

Ln(n−1)(g−1)
σ

∼= det(Γ(σn ⊗ σn−1)⟨1⟩)⊗ (Ldetσn−1
)Ω−n/2 ⊗ (Ldetσn

)Ω−(n−1)/2⟨(n2 − 2)(g − 1)⟩.

This implies that the Cl(M) is a highest weight module with Frobenius eigenvalue on the highest weight

vector equal to q−n
2(g−1)/2χ−ndetσn−1

(Ω1/2)χ−n+1
detσn

(Ω1/2)ϵ(σn ⊗ σn−1)

We would also like to mention a relevant result, which will be used in the study of diagonal cycle in §6.3.
For any L ∈ BunGm

(Fq), let Bun
′L
GLn

= {(Ω(n−1)/2 ⊗ L ⊂ E)|E ∈ BunGLn
} be the moduli stack of a rank

n vector bundle E together with an injection of coherent sheaves Ω(n−1)/2 ⊗ L ⊂ E . Consider the natural
forgetful map ρLn : Bun′LGLn

→ BunGLn defined by ρLn(Ω
(n−1)/2 ⊗ L ⊂ E) = E . It restricts to maps on

connected components ρL,dn : Bun′L,dGLn
→ BundGLn

.

Theorem 6.10. [Lys99] For any geometrically irreducible local systems σn, σ
′
n ∈ LocGLn(k), there is a

canonical isomorphism

Γc(ρ
L,d,∗
n (LFGV,d

σn
⊗ LFGV,d

σ′
n

))

∼=
SymdL(Γ(σn ⊗ σ′n)⟨2⟩)⟨−2(dL − n(g − 1))⟩ ⊗ (Ldetσn)L⟨−(g − 1)⟩ ⊗ (Ldetσ′

n
)L⟨−(g − 1)⟩

.

where dL = d− n degL ⊗ Ω(n−1)/2.

17The role of ωM and ωM,X are different here: The bilinear form ωM (independent of X) is directly related to the intersection

pairing on the isotypic part. The bilinear form ωM,X (dependent on X) arises from the Poisson structure on the Plancherel
algebra attached to X and controls the Kolyvagin system. The sign in the difference between these two forms can be traced

back to [LW25, Proposition 7.1].
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6.3. Diagonal cycles. We are now going to use techniques from §5.5 to study the diagonal cycle classes.
In this section, we take H = GLn, G = H ×H, and X = H\G. For any V I ∈ Rep(GLI

n)
♡ and d ∈ Z, we

would like to understand the diagonal cycle

⟨−,−⟩dV I = ∆Hk,I,![Sht
d
GLn,V I /CI ] ∈ Hom0((lI,!(ICV I |ShtdGLn,I

))⊗2, kCI ). (6.14)

That is, for any geometrically irreducible Weil local system σn ∈ LocarithGLn
(k), we want to understand its

restriction to the σn-isotypic part

⟨−,−⟩dV I ,σn
= ∆Hk,I,![Sht

d
GLn,V I /CI ] ◦ (ξσn,I ⊗ ξσ∗

n,I
)

= ∆Hk,I,![ShtGLn,V I /CI ] ◦ (ξdσn,I ⊗ ξdσ∗
n,I

)

∈ Hom0(V I
σn
⊗ V I

σ∗
n
, kCI )

. (6.15)

Note that when V I = Stdϵn, this element is (1.10).
For this, we take the diagonal cohomological correspondence defined in (3.4)

cV I ∈ CorrHkG,I ,ICV I⊠V I
(PX ⊠ kCI ,PX ⊠ kCI ). (6.16)

The result of Theorem 3.3 gives us

Proposition 6.11. We have
∆Hk,I,![ShtGLn,V I /CI ] = trSht,CI (cV I ).

In particular, we have
⟨−,−⟩dV I ,σn

= trSht,CI (cV I ) ◦ (ξdσn,I ⊗ ξdσ∗
n,I

).

Since LFGV
σ∗
n

∼= D(LFGV
σn

), we can apply results in §5.5, in particular Conjecture 5.11. By Proposition 5.14,
we only need to verify Assumption 5.13. In our case, this is provided by Theorem 6.14. Therefore, we obtain
the following:

Theorem 6.12. For every d ∈ Z and V I ∈ Rep(GLI
n), we have

trSht,CI (cV I ) ◦ (ξdσn,I ⊗ ξdσ∗
n,I

) = (ln q) · Ress=1 L(σn ⊗ σ∗n, s) · evV I
σn
∈ Hom0(V I

σn
⊗ V I

σ∗
n
, kCI ). (6.17)

Here evV I
σn

: V I
σn
⊗ V I

σ∗
n
→ kCI is the evaluation map.

The proof will be given in §6.3.2.
Combing Proposition 6.11 and Theorem 6.12, we obtain

Corollary 6.13. For any irreducible representation V I ∈ Rep(GLI
n)
♡ and d ∈ Z, the pairing

⟨−,−⟩dV I ,σn
: V I

σn
⊗ V I

σ∗
n
→ kCI

is non-degenerate.

In our application, we would like to take H = GLn×GLn−1. In this case, for each (dn, dn−1) ∈ Z2, we
study the diagonal cycle

⟨−,−⟩(dn,dn−1)
ϵ = ∆Hk,I,![Sht

(dn,dn−1)
GLn×GLn−1,(Stdn ⊠ Stdn−1)ϵ

/CI ]

∈ Hom0((lI,!(IC(Stdn ⊠ Stdn−1)ϵ |
(dn,dn−1)
ShtGLn ×GLn−1,I

))⊗2, kCI )
(6.18)

and the diagonal cohomological correspondence

c(Stdn ⊠ Stdn−1)ϵ

as well as the restriction of the intersection pairing to σ-isotypic part

⟨−,−⟩(dn,dn−1)
ϵ,σ = ⟨−,−⟩(dn,dn−1)

ϵ ◦ (ξσ,ϵ ⊗ ξσ∗,ϵ) ∈ Hom0((σn ⊗ σn−1)
ϵ ⊗ (σ∗n ⊗ σ∗n−1)

ϵ, kCI ) (6.19)

where σ = (σn, σn−1) and σ∗ = (σ∗n, σ
∗
n−1). Then results similar to Proposition 6.11 and Theorem 6.12 hold

with Theorem 6.12 replaced by

trSht,CI (c(Stdn ⊠ Stdn−1)ϵ) ◦ (ξ
(dn,dn−1)
σ,ϵ ⊗ ξ

(dn,dn−1)
σ∗,ϵ )

= (ln q)2 · Ress=1 L(σn ⊗ σ∗n, s)Ress=1 L(σn−1 ⊗ σ∗n−1, s) · ev(σn⊗σn−1)ϵ

∈ Hom0((σn ⊗ σn−1)
ϵ ⊗ (σ∗n ⊗ σ∗n−1)

ϵ, kCI ).

(6.20)



SPECIAL CYCLE ON SHTUKAS AND CATEGORICAL TRACE 57

6.3.1. Geometric result. To apply Conjecture 5.11, we need to verify Assumption 5.13 to apply Proposition

5.14. We also need to compute the scalar tr(Frob,Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

)) involved in Conjecture 5.11. All of

these will follow from a description of Γc(LFGV
σn
⊗ LFGV

σ∗
n

) which we are going to give.

Take V = Stdn ∈ Rep(GLn) and the diagonal cohomological correspondence cStdn ⊠ Stdn
, we obtain a

Hecke action map introduced in §5.1.1

aStdn ⊠ Stdn,σn⊠σ∗
n
: Γ(σn ⊗ σ∗n)⟨2⟩ ⊗ Γc(LFGV

σn
⊗ LFGV

σ∗
n

)→ Γc(LFGV
σn
⊗ LFGV

σ∗
n

). (6.21)

Recall we have the canonical elements

evLFGV,d
σn

∈ H0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

))∗

defined in (5.41). We also have the fundamental class coevσn
([C]) ∈ H0(Γ(σn ⊗ σ∗n)⟨2⟩).

The following result completely describes Γc(LFGV
σn
⊗ LFGV

σ∗
n

):

Theorem 6.14. For every d ∈ Z, we have dimH0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

)) = 1, and the action map (6.21)
induces an isomorphism of graded vector spaces

H∗(Sym•(Γ(σn ⊗ σ∗n)⟨2⟩))[
1

coevσn
([C])

] ·H0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

))
∼→ H∗(Γc(LFGV

σn
⊗ LFGV

σ∗
n

)). (6.22)

Proof of Theorem 6.14. First note that both sides of (6.22) carry bi-gradings defined as follows: on the
right-hand side, we set

degHi(Γc(LFGV,e
σn

⊗ LFGV,e
σ∗
n

)) = (i, e).

On the left hand side, we have

degHi(Syme(Γ(σn ⊗ σ∗n)⟨2⟩)) = (i, e).

We first prove the following:

Lemma 6.15. Both sides of (6.22) have the same bi-graded dimension.

Proof of lemma. This follows from [Lys01, Main Global Theorem]. For the convenience of readers, we
reproduce the proof here.

For each d ∈ Z, there exists a quasi-compact open substack j : U ↪→ BundGLn
and an integer e ∈ Z such

that

• LFGV,d
σn

is a clean extension from U ⊂ BundGLn
;

• For any E ∈ U and L ∈ Pic with degL ≤ e , we have H1(Hom(L ⊗ Ω(n−1)/2, E)) = 0.

Take U ,e as above. For any L as above, after restricting to U , the map ρL,dn is the complementary of zero
section in a smooth vector bundle of rank H0(Hom(L⊗Ω(n−1)/2, E)) = dL − n(g− 1). Therefore, we have a
fiber sequence of objects in Shv(U):

F → (ρL,dn,! kBun′L,d
GLn

)|U ⟨2(dL − n(g − 1))⟩ → kU . (6.23)

where F ∈ Shv(U)≤−(dL−n(g−1)). Applying the functor Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

⊗ j!(−)) to this fiber sequence,
we obtain a fiber sequence

Γc(j
∗(LFGV,d

σn
⊗LFGV,d

σ∗
n

)⊗F)→ Γc(ρ
L,d,∗
n (LFGV,d

σn
⊗LFGV,d

σ∗
n

))⟨2(dL−n(g−1))⟩ → Γc(LFGV,d
σn

⊗LFGV,d
σ∗
n

) (6.24)

By Theorem 6.10, we have

Γc(ρ
L,d,∗
n (LFGV,d

σn
⊗ LFGV,d

σ∗
n

))⟨2(dL − n(g − 1))⟩ ∼= SymdL(Γ(σn ⊗ σ∗n)⟨2⟩).
Therefore, the fiber sequence above is identified with

Γc(j
∗(LFGV,d

σn
⊗ LFGV,d

σ∗
n

)⊗F)→ SymdL(Γ(σn ⊗ σ∗n)⟨2⟩)→ Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

)

Since the functor Γc : Shv(U) → Vect has bounded above cohomological dimension, by taking degL suffi-
ciently small, we can make the first term arbitrarily connective. This implies that for any i ∈ Z, there are
isomorphisms

Hi(Symk(Γ(σn ⊗ σ∗n)⟨2⟩))
∼→ Hi(Γc(LFGV,d

σn
⊗ LFGV,d

σ∗
n

))

for sufficiently large k ∈ Z. One easily sees that this implies that both sides of (6.22) have the same bi-graded
dimension. This ends the proof of the lemma. □
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In particular, we know that dimH0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

)) = 1.

When g(C) = 1 and n > 1, such σn does not exist, and there is nothing to prove. When g(C) = 1 and
n = 1, one can verify the statement by hand. Therefore, we can assume g(C) ̸= 1. In this case, by the proof
of Lemma 5.16, the action map (6.21) induces a map

aSymcStdn ⊠ Stdn
,σn⊠σ∗

n
: H∗(Sym•(Γ(σn ⊗ σ∗n)⟨2⟩))⊗H∗(Γc(LFGV

σn
⊗ LFGV

σ∗
n

))→ H∗(Γc(LFGV
σn
⊗ LFGV

σ∗
n

)). (6.25)

This equips H∗(Γc(LFGV
σn

⊗ LFGV
σ∗
n

)) with a structure of H∗(Sym•(Γ(σn ⊗ σ∗n)⟨2⟩))-module. We have the
following lemma:

Lemma 6.16. The induced map

H∗(Sym•(Γ(σn ⊗ σ∗n)⟨2⟩)) ·H0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

))→ H∗(Γc(LFGV
σn
⊗ LFGV

σ∗
n

)) (6.26)

is an injection.

Proof of lemma. We claim that there exists another bi-graded action map

acStd∗n ⊠ Std∗n
,σn⊠σ∗

n
: Γ(σ∗n ⊗ σn)⊗ Γc(LFGV

σn
⊗ LFGV

σ∗
n

)→ Γc(LFGV
σn
⊗ LFGV

σ∗
n

) (6.27)

in which degHi(Γ(σ∗n ⊗ σn)) = (i,−1) such that there exists a non-zero number κ ∈ k× satisfying

acStdn ⊠ Stdn
,σn⊠σ∗

n
◦ acStd∗n ⊠ Std∗n

,σn⊠σ∗
n
− acStd∗n ⊠ Std∗n

,σn⊠σ∗
n
◦ acStdn ⊠ Stdn

,σn⊠σ∗
n
= κ · evΓ(σn⊗σ∗

n)
⊗id (6.28)

as maps
Γ(σn ⊗ σ∗n)⟨2⟩ ⊗ Γ(σ∗n ⊗ σn)⊗ Γc(LFGV

σn
⊗ LFGV

σ∗
n

)→ Γc(LFGV
σn
⊗ LFGV

σ∗
n

).

Here, the map evΓ(σn⊗σ∗
n)

: Γ(σn⊗ σ∗n)⟨2⟩⊗Γ(σ∗n⊗ σn)→ k is the evaluation map of the duality induced by
cup product.

This is a particular case of the automorphic commutator relation [LW25, Corollary 6.12]. To explain this,
we will freely use notations in loc.cit. Consider the spherical variety X ′ = An×GLn (GLn×GLn) where GLn

acts on An via the standard action. Note that we have a closed embedding i : X = GLn → X ′ given by the
zero-section. This gives a functor i∗ : Shv(LX ′/L+G⋊Aut(D))→ Shv(LX/L+G⋊Aut(D)) as SatG,ℏ-module
categories. Since i∗δX′ = δX , this induces a map between Plancherel algebras PLX′,ℏ → PLX,ℏ as algebra
objects in Rep(GLn×GLn). By [BFGT21], there are canonical local special cohomological correspondences
for X ′

cX
′,l

Stdn ⊠ Stdn
∈ Hom0(Stdn ⊠Stdn,PLX′,ℏ)

and
cX

′,l
Std∗

n ⊠ Std∗
n
∈ Hom0(Std∗n ⊠Std∗n⟨−2⟩,PLX′,ℏ)

such that
[cX

′,l
Stdn ⊠ Stdn

, cX
′,l

Std∗
n ⊠ Std∗

n
] = κℏ · cX

′,l
triv

for some κ ∈ k×. Here cX
′,l

triv ∈ Hom0(triv,PLX′,ℏ) is the trivial cohomological correspondence. By composing
with the map PLX′,ℏ → PLX,ℏ, we get local cohomological correspondences for X

clStdn ⊠ Stdn
∈ Hom0(Stdn ⊠Stdn,PLX,ℏ)

and
clStd∗

n ⊠ Std∗
n
∈ Hom0(Std∗n ⊠Std∗n⟨−2⟩,PLX,ℏ)

such that
[clStdn ⊠ Stdn

, clStd∗
n ⊠ Std∗

n
] = κℏ · cltriv.

Note that the local-to-global procedure in [LW25, §4.4] produces from clStdn ⊠ Stdn
the diagonal cohomological

correspondence cStdn ⊠ Stdn
. Therefore, we can take cStd∗

n ⊠ Std∗
n
to be the globalization of clStd∗

n ⊠ Std∗
n
, and take

acStd∗
n ⊠ Std∗

n
,σn⊠σ∗

n
to be the induced Hecke action. The identity (6.28) follows from [LW25, Corollary 6.12].

Now we prove the injectivity of the map in the lemma. Write

H0(Γ(σn ⊗ σ∗n)⟨2⟩) = k · c0

H−1(Γ(σn ⊗ σ∗n)⟨2⟩) =
⊕
j

k · c−1,j

H−2(Γ(σn ⊗ σ∗n)⟨2⟩) = k · c−2
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where c0 = coevσn
([C]). Assuming the contrary, suppose ch0

0 f(c−1,1, c−1,2, · · · )ch−2

−2 · H0(Γc(LFGV,d
σn

⊗
LFGV,d
σ∗
n

)) = 0 for some h0, h−2 ∈ Z≥0 and a polynomial f(c−1,1, c−1,2, · · · ) ∈ k[c−1,1, c−1,2, · · · ]. Since

the action of Hi(Γ(σ∗n ⊗ σn)) annihilates H0(Γc(LFGV,d
σn

⊗ LFGV,d
σ∗
n

)) for i = 1, 2 for degree reasons, we

can apply the relation (6.28) and get ch0
0 · H0(Γc(LFGV,d

σn
⊗ LFGV,d

σ∗
n

)) = 0. However, Lemma 5.15 implies

that (c0 · −)∗ evLFGV,d
σn

= evLFGV,d−1
σn

for all d ∈ Z. Therefore, we have ch0
0 · H0(Γc(LFGV,d

σn
⊗ LFGV,d

σ∗
n

)) =

H0(Γc(LFGV,d+h0
σn

⊗ LFGV,d+h0

σ∗
n

)) ̸= 0. This gives a contradiction and proves the lemma.
□

During the proof above, one sees that

coevσn
([C]) · − : H0(Γc(LFGV,d

σn
⊗ LFGV,d

σ∗
n

))
∼→ H0(Γc(LFGV,d+1

σn
⊗ LFGV,d+1

σ∗
n

)).

This implies that the map (6.26) naturally extends to a map (6.22), which has to be an isomorphism since
both sides have the same bi-graded dimension. This concludes the proof of Theorem 6.14.

□

6.3.2. Proof of Theorem 6.12.

Proof of Theorem 6.12. By Theorem 6.14, Assumption 5.13 is satisfied. Therefore, Conjecture 5.11 is true
by Proposition 5.14. Let α1, · · · , α2n2(g−1)+2 be the Frobenius eigenvalues for H1(Γ(σn ⊗ σ∗n)). Again by
Theorem 6.14, we know

tr(Frob,Γc(Ld
σn
⊗ Ld

σ∗
n
)) = tr(Frob,Sym• τ≤−1(Γ(σn ⊗ σ∗n)⟨2⟩))

=

∏2n2(g−1)+2
i=1 (1− αiq

−1)

1− q−1

= (ln q)Ress=1

∏2n2(g−1)+2
i=1 (1− αiq

−s)

(1− q−s)(1− q1−s)

= (ln q)Ress=1 L(σn ⊗ σ∗n, s)

.

This concludes the proof of Theorem 6.12 by Conjecture 5.11.
□

6.4. Computing intersection number. We are now ready to wrap up the proof.

Proof of Theorem 1.7. The first claim about the finiteness of non-zero terms has been addressed in §6.2. We
only need to prove the identity (1.17). Consider the pairing

⟨−,−⟩(dn,dn−1)
σ,r =

∑
ϵ∈{±1}r0

⟨−,−⟩(dn,dn−1)
ϵ,σ ∈ Hom0((M⊗r)0 ⊗ (M⊗r)0, k). (6.29)

By Proposition 6.3 and Proposition 6.4, the desired identity (1.17) translates to

⟨zσ,r, zσ∗,r⟩(dn,dn−1),∗
σ,r

=

qdimBunGLn−1 (ln q)−r−2

(
d
ds

)r ∣∣∣
s=1/2

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s)

Ress=1 L̃(σn ⊗ σ∗n, s)Ress=1 L̃(σn−1 ⊗ σ∗n−1, s)

(6.30)

where zσ,r ∈ (M⊗r)∗0 is introduced in (6.8). We want to compare this with Theorem 6.5. For this purpose,
we first compare zσ,r ∈ (M⊗r)∗0 with zσ∗,r ∈ (M⊗r)∗0. By comparing Corollary 6.8 and Remark 6.9 for σ
and σ∗, we know that

zσ∗,r =
q−n

2(g−1)/2χ−ndetσ∗
n−1

(Ω1/2)χ−n+1
detσ∗

n
(Ω1/2)

q−n2(g−1)/2χ−ndetσn−1
(Ω1/2)χ−n+1

detσn
(Ω1/2)ϵ(σn ⊗ σn−1)

zσ,r

= χn
detσn−1

(Ω)χn−1
detσn

(Ω)ϵ(σn ⊗ σn−1)
−1zσ,r

. (6.31)
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Then we compare ωM⊗r |(M⊗r)⊗2
0

with ⟨−,−⟩(dn,dn−1)
σ,r . By combining Proposition 6.11 and Theorem 6.12

(with identity replaced by (6.20)), we get

⟨−,−⟩(dn,dn−1)
σ,r

=

(−1)r/2(ln q)2 · Ress=1 L(σn ⊗ σ∗n, s)Ress=1 L(σn−1 ⊗ σ∗n−1, s)ωM⊗r |(M⊗r)⊗2
0

. (6.32)

Here the sign (−1)r/2 arises from our definition of ωM , which can be tracked back to the negative sign in
(6.10).18 By passing to the pairing on the dual space, one has

⟨−,−⟩(dn,dn−1),∗
σ,r

=

(−1)r/2 1

(ln q)2 · Ress=1 L(σn ⊗ σ∗n, s)Ress=1 L(σn−1 ⊗ σ∗n−1, s)
ω(M⊗r)∗ |(M⊗r)∗⊗2

0

. (6.33)

Combining Theorem 6.5, (6.31), (6.33), we get

⟨zσ,r, zσ∗,r⟩(dn,dn−1),∗
σ,r

=

q−n
2(g−1)(ln q)−r−2

(
d
ds

)r ∣∣∣
s=1/2

L̃(σn ⊗ σn−1 ⊕ σ∗n ⊗ σ∗n−1, s)

Ress=1 L(σn ⊗ σ∗n, s)Ress=1 L(σn−1 ⊗ σ∗n−1, s)

.

Then the desired equality (6.30) follows from the equality above and

L̃(σn ⊗ σ∗n, s) = qn
2(g−1)sL(σn ⊗ σ∗n, s)

L̃(σn−1 ⊗ σ∗n−1, s) = q(n−1)
2(g−1)sL(σn−1 ⊗ σ∗n−1, s)

dimBunGLn−1 = (n− 1)2(g − 1).

This concludes the proof of Theorem 1.7.
□
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